5,415 research outputs found

    Multi-Sensor Fuzzy Data Fusion Using Sensors with Different Characteristics

    Full text link
    This paper proposes a new approach to multi-sensor data fusion. It suggests that aggregation of data from multiple sensors can be done more efficiently when we consider information about sensors' different characteristics. Similar to most research on effective sensors' characteristics, especially in control systems, our focus is on sensors' accuracy and frequency response. A rule-based fuzzy system is presented for fusion of raw data obtained from the sensors that have complement characteristics in accuracy and bandwidth. Furthermore, a fuzzy predictor system is suggested aiming for extreme accuracy which is a common need in highly sensitive applications. Advantages of our proposed sensor fusion system are shown by simulation of a control system utilizing the fusion system for output estimation.Comment: CSI Journal in Computer Science and Engineering, published 2019 (First Submission 2010

    HMS-Net: Hierarchical Multi-scale Sparsity-invariant Network for Sparse Depth Completion

    Full text link
    Dense depth cues are important and have wide applications in various computer vision tasks. In autonomous driving, LIDAR sensors are adopted to acquire depth measurements around the vehicle to perceive the surrounding environments. However, depth maps obtained by LIDAR are generally sparse because of its hardware limitation. The task of depth completion attracts increasing attention, which aims at generating a dense depth map from an input sparse depth map. To effectively utilize multi-scale features, we propose three novel sparsity-invariant operations, based on which, a sparsity-invariant multi-scale encoder-decoder network (HMS-Net) for handling sparse inputs and sparse feature maps is also proposed. Additional RGB features could be incorporated to further improve the depth completion performance. Our extensive experiments and component analysis on two public benchmarks, KITTI depth completion benchmark and NYU-depth-v2 dataset, demonstrate the effectiveness of the proposed approach. As of Aug. 12th, 2018, on KITTI depth completion leaderboard, our proposed model without RGB guidance ranks first among all peer-reviewed methods without using RGB information, and our model with RGB guidance ranks second among all RGB-guided methods.Comment: IEEE Trans. on Image Processin

    Machine learning based hyperspectral image analysis: A survey

    Full text link
    Hyperspectral sensors enable the study of the chemical properties of scene materials remotely for the purpose of identification, detection, and chemical composition analysis of objects in the environment. Hence, hyperspectral images captured from earth observing satellites and aircraft have been increasingly important in agriculture, environmental monitoring, urban planning, mining, and defense. Machine learning algorithms due to their outstanding predictive power have become a key tool for modern hyperspectral image analysis. Therefore, a solid understanding of machine learning techniques have become essential for remote sensing researchers and practitioners. This paper reviews and compares recent machine learning-based hyperspectral image analysis methods published in literature. We organize the methods by the image analysis task and by the type of machine learning algorithm, and present a two-way mapping between the image analysis tasks and the types of machine learning algorithms that can be applied to them. The paper is comprehensive in coverage of both hyperspectral image analysis tasks and machine learning algorithms. The image analysis tasks considered are land cover classification, target detection, unmixing, and physical parameter estimation. The machine learning algorithms covered are Gaussian models, linear regression, logistic regression, support vector machines, Gaussian mixture model, latent linear models, sparse linear models, Gaussian mixture models, ensemble learning, directed graphical models, undirected graphical models, clustering, Gaussian processes, Dirichlet processes, and deep learning. We also discuss the open challenges in the field of hyperspectral image analysis and explore possible future directions

    Bayesian Extensions of Kernel Least Mean Squares

    Full text link
    The kernel least mean squares (KLMS) algorithm is a computationally efficient nonlinear adaptive filtering method that "kernelizes" the celebrated (linear) least mean squares algorithm. We demonstrate that the least mean squares algorithm is closely related to the Kalman filtering, and thus, the KLMS can be interpreted as an approximate Bayesian filtering method. This allows us to systematically develop extensions of the KLMS by modifying the underlying state-space and observation models. The resulting extensions introduce many desirable properties such as "forgetting", and the ability to learn from discrete data, while retaining the computational simplicity and time complexity of the original algorithm.Comment: 7 pages, 4 fiure

    Radiological images and machine learning: trends, perspectives, and prospects

    Full text link
    The application of machine learning to radiological images is an increasingly active research area that is expected to grow in the next five to ten years. Recent advances in machine learning have the potential to recognize and classify complex patterns from different radiological imaging modalities such as x-rays, computed tomography, magnetic resonance imaging and positron emission tomography imaging. In many applications, machine learning based systems have shown comparable performance to human decision-making. The applications of machine learning are the key ingredients of future clinical decision making and monitoring systems. This review covers the fundamental concepts behind various machine learning techniques and their applications in several radiological imaging areas, such as medical image segmentation, brain function studies and neurological disease diagnosis, as well as computer-aided systems, image registration, and content-based image retrieval systems. Synchronistically, we will briefly discuss current challenges and future directions regarding the application of machine learning in radiological imaging. By giving insight on how take advantage of machine learning powered applications, we expect that clinicians can prevent and diagnose diseases more accurately and efficiently.Comment: 13 figure

    Monotonic Calibrated Interpolated Look-Up Tables

    Full text link
    Real-world machine learning applications may require functions that are fast-to-evaluate and interpretable. In particular, guaranteed monotonicity of the learned function can be critical to user trust. We propose meeting these goals for low-dimensional machine learning problems by learning flexible, monotonic functions using calibrated interpolated look-up tables. We extend the structural risk minimization framework of lattice regression to train monotonic look-up tables by solving a convex problem with appropriate linear inequality constraints. In addition, we propose jointly learning interpretable calibrations of each feature to normalize continuous features and handle categorical or missing data, at the cost of making the objective non-convex. We address large-scale learning through parallelization, mini-batching, and propose random sampling of additive regularizer terms. Case studies with real-world problems with five to sixteen features and thousands to millions of training samples demonstrate the proposed monotonic functions can achieve state-of-the-art accuracy on practical problems while providing greater transparency to users.Comment: To appear (with minor revisions), Journal Machine Learning Research 201

    Linked Component Analysis from Matrices to High Order Tensors: Applications to Biomedical Data

    Full text link
    With the increasing availability of various sensor technologies, we now have access to large amounts of multi-block (also called multi-set, multi-relational, or multi-view) data that need to be jointly analyzed to explore their latent connections. Various component analysis methods have played an increasingly important role for the analysis of such coupled data. In this paper, we first provide a brief review of existing matrix-based (two-way) component analysis methods for the joint analysis of such data with a focus on biomedical applications. Then, we discuss their important extensions and generalization to multi-block multiway (tensor) data. We show how constrained multi-block tensor decomposition methods are able to extract similar or statistically dependent common features that are shared by all blocks, by incorporating the multiway nature of data. Special emphasis is given to the flexible common and individual feature analysis of multi-block data with the aim to simultaneously extract common and individual latent components with desired properties and types of diversity. Illustrative examples are given to demonstrate their effectiveness for biomedical data analysis.Comment: 20 pages, 11 figures, Proceedings of the IEEE, 201

    Sparse Deep Nonnegative Matrix Factorization

    Full text link
    Nonnegative matrix factorization is a powerful technique to realize dimension reduction and pattern recognition through single-layer data representation learning. Deep learning, however, with its carefully designed hierarchical structure, is able to combine hidden features to form more representative features for pattern recognition. In this paper, we proposed sparse deep nonnegative matrix factorization models to analyze complex data for more accurate classification and better feature interpretation. Such models are designed to learn localized features or generate more discriminative representations for samples in distinct classes by imposing L1L_1-norm penalty on the columns of certain factors. By extending one-layer model into multi-layer one with sparsity, we provided a hierarchical way to analyze big data and extract hidden features intuitively due to nonnegativity. We adopted the Nesterov's accelerated gradient algorithm to accelerate the computing process with the convergence rate of O(1/k2)O(1/k^2) after kk steps iteration. We also analyzed the computing complexity of our framework to demonstrate their efficiency. To improve the performance of dealing with linearly inseparable data, we also considered to incorporate popular nonlinear functions into this framework and explored their performance. We applied our models onto two benchmarking image datasets, demonstrating our models can achieve competitive or better classification performance and produce intuitive interpretations compared with the typical NMF and competing multi-layer models.Comment: 13 pages, 8 figure

    Generic Image Classification Approaches Excel on Face Recognition

    Full text link
    The main finding of this work is that the standard image classification pipeline, which consists of dictionary learning, feature encoding, spatial pyramid pooling and linear classification, outperforms all state-of-the-art face recognition methods on the tested benchmark datasets (we have tested on AR, Extended Yale B, the challenging FERET, and LFW-a datasets). This surprising and prominent result suggests that those advances in generic image classification can be directly applied to improve face recognition systems. In other words, face recognition may not need to be viewed as a separate object classification problem. While recently a large body of residual based face recognition methods focus on developing complex dictionary learning algorithms, in this work we show that a dictionary of randomly extracted patches (even from non-face images) can achieve very promising results using the image classification pipeline. That means, the choice of dictionary learning methods may not be important. Instead, we find that learning multiple dictionaries using different low-level image features often improve the final classification accuracy. Our proposed face recognition approach offers the best reported results on the widely-used face recognition benchmark datasets. In particular, on the challenging FERET and LFW-a datasets, we improve the best reported accuracies in the literature by about 20% and 30% respectively.Comment: 10 page

    Learning Power Spectrum Maps from Quantized Power Measurements

    Full text link
    Power spectral density (PSD) maps providing the distribution of RF power across space and frequency are constructed using power measurements collected by a network of low-cost sensors. By introducing linear compression and quantization to a small number of bits, sensor measurements can be communicated to the fusion center with minimal bandwidth requirements. Strengths of data- and model-driven approaches are combined to develop estimators capable of incorporating multiple forms of spectral and propagation prior information while fitting the rapid variations of shadow fading across space. To this end, novel nonparametric and semiparametric formulations are investigated. It is shown that PSD maps can be obtained using support vector machine-type solvers. In addition to batch approaches, an online algorithm attuned to real-time operation is developed. Numerical tests assess the performance of the novel algorithms.Comment: Submitted Jun. 201
    • …
    corecore