5,324 research outputs found

    Neural architectures for open-type relation argument extraction

    Get PDF
    In this work, we focus on the task of open-type relation argument extraction (ORAE): given a corpus, a query entity Q, and a knowledge base relation (e.g., “Q authored notable work with title X”), the model has to extract an argument of non-standard entity type (entities that cannot be extracted by a standard named entity tagger, for example, X: the title of a book or a work of art) from the corpus. We develop and compare a wide range of neural models for this task yielding large improvements over a strong baseline obtained with a neural question answering system. The impact of different sentence encoding architectures and answer extraction methods is systematically compared. An encoder based on gated recurrent units combined with a conditional random fields tagger yields the best results. We release a data set to train and evaluate ORAE, based on Wikidata and obtained by distant supervision

    The Knowledge Level in Cognitive Architectures: Current Limitations and Possible Developments

    Get PDF
    In this paper we identify and characterize an analysis of two problematic aspects affecting the representational level of cognitive architectures (CAs), namely: the limited size and the homogeneous typology of the encoded and processed knowledge. We argue that such aspects may constitute not only a technological problem that, in our opinion, should be addressed in order to build articial agents able to exhibit intelligent behaviours in general scenarios, but also an epistemological one, since they limit the plausibility of the comparison of the CAs' knowledge representation and processing mechanisms with those executed by humans in their everyday activities. In the final part of the paper further directions of research will be explored, trying to address current limitations and future challenges

    End-to-End Differentiable Proving

    Get PDF
    We introduce neural networks for end-to-end differentiable proving of queries to knowledge bases by operating on dense vector representations of symbols. These neural networks are constructed recursively by taking inspiration from the backward chaining algorithm as used in Prolog. Specifically, we replace symbolic unification with a differentiable computation on vector representations of symbols using a radial basis function kernel, thereby combining symbolic reasoning with learning subsymbolic vector representations. By using gradient descent, the resulting neural network can be trained to infer facts from a given incomplete knowledge base. It learns to (i) place representations of similar symbols in close proximity in a vector space, (ii) make use of such similarities to prove queries, (iii) induce logical rules, and (iv) use provided and induced logical rules for multi-hop reasoning. We demonstrate that this architecture outperforms ComplEx, a state-of-the-art neural link prediction model, on three out of four benchmark knowledge bases while at the same time inducing interpretable function-free first-order logic rules.Comment: NIPS 2017 camera-ready, NIPS 201
    • …
    corecore