1,851 research outputs found

    Beyond the One Step Greedy Approach in Reinforcement Learning

    Get PDF
    The famous Policy Iteration algorithm alternates between policy improvement and policy evaluation. Implementations of this algorithm with several variants of the latter evaluation stage, e.g, nn-step and trace-based returns, have been analyzed in previous works. However, the case of multiple-step lookahead policy improvement, despite the recent increase in empirical evidence of its strength, has to our knowledge not been carefully analyzed yet. In this work, we introduce the first such analysis. Namely, we formulate variants of multiple-step policy improvement, derive new algorithms using these definitions and prove their convergence. Moreover, we show that recent prominent Reinforcement Learning algorithms are, in fact, instances of our framework. We thus shed light on their empirical success and give a recipe for deriving new algorithms for future study.Comment: ICML 201

    Certified Reinforcement Learning with Logic Guidance

    Full text link
    This paper proposes the first model-free Reinforcement Learning (RL) framework to synthesise policies for unknown, and continuous-state Markov Decision Processes (MDPs), such that a given linear temporal property is satisfied. We convert the given property into a Limit Deterministic Buchi Automaton (LDBA), namely a finite-state machine expressing the property. Exploiting the structure of the LDBA, we shape a synchronous reward function on-the-fly, so that an RL algorithm can synthesise a policy resulting in traces that probabilistically satisfy the linear temporal property. This probability (certificate) is also calculated in parallel with policy learning when the state space of the MDP is finite: as such, the RL algorithm produces a policy that is certified with respect to the property. Under the assumption of finite state space, theoretical guarantees are provided on the convergence of the RL algorithm to an optimal policy, maximising the above probability. We also show that our method produces ''best available'' control policies when the logical property cannot be satisfied. In the general case of a continuous state space, we propose a neural network architecture for RL and we empirically show that the algorithm finds satisfying policies, if there exist such policies. The performance of the proposed framework is evaluated via a set of numerical examples and benchmarks, where we observe an improvement of one order of magnitude in the number of iterations required for the policy synthesis, compared to existing approaches whenever available.Comment: This article draws from arXiv:1801.08099, arXiv:1809.0782

    Deep controlled learning of dynamic policies with an application to lost-sales inventory control

    Full text link
    Recent literature established that neural networks can represent good policies across a range of stochastic dynamic models in supply chain and logistics. We propose a new algorithm that incorporates variance reduction techniques, to overcome limitations of algorithms typically employed in literature to learn such neural network policies. For the classical lost sales inventory model, the algorithm learns neural network policies that are vastly superior to those learned using model-free algorithms, while outperforming the best heuristic benchmarks by an order of magnitude. The algorithm is an interesting candidate to apply to other stochastic dynamic problems in supply chain and logistics, because the ideas in its development are generic
    corecore