1,264 research outputs found

    Neural systems underlying decisions about affective odors.

    Get PDF
    Decision making about affective value may occur after the reward value of a stimulus is represented and may involve different brain areas to those involved in decision-making about the physical properties of stimuli, such as intensity. In an fMRI study, we delivered two odors separated by a delay, with instructions on different trials to decide which odor was more pleasant or more intense or to rate the pleasantness and intensity of the second odor without making a decision. The fMRI signals in the medial pFC area 10 and in regions to which it projects, including the ACC and insula, were higher when decisions were being made compared with ratings, implicating these regions in decision-making. Decision-making about affective value was related to larger signals in the dorsal part of medial area 10 and the agranular insula, whereas decisions about intensity were related to larger activations in the dorsolateral pFC, ventral premotor cortex, and anterior insula. For comparison, the mid-OFC had activations related not to decision making but to subjective pleasantness ratings, providing a continuous representation of affective value. In contrast, areas such as medial area 10 and the ACC are implicated in reaching a decision in which a binary outcome is produced

    A common neural scale for the subjective pleasantness of different primary rewards.

    Get PDF
    When an economic decision is taken, it is between goals with different values, and the values must be on the same scale. Here, we used functional MRI to search for a brain region that represents the subjective pleasantness of two different rewards on the same neural scale. We found activity in the ventral prefrontal cortex that correlated with the subjective pleasantness of two fundamentally different rewards, taste in the mouth and warmth on the hand. The evidence came from two different investigations, a between-group comparison of two independent fMRI studies, and from a within-subject study. In the latter, we showed that neural activity in the same voxels in the ventral prefrontal cortex correlated with the subjective pleasantness of the different rewards. Moreover, the slope and intercept for the regression lines describing the relationship between activations and subjective pleasantness were highly similar for the different rewards. We also provide evidence that the activations did not simply represent multisensory integration or the salience of the rewards. The findings demonstrate the existence of a specific region in the human brain where neural activity scales with the subjective pleasantness of qualitatively different primary rewards. This suggests a principle of brain processing of importance in reward valuation and decision-making

    Contributions of the ventromedial prefrontal cortex to goal-directed action selection

    Get PDF
    In this article, it will be argued that one of the key contributions of the ventromedial prefrontal cortex (vmPFC) to goal-directed action selection lies both in retrieving the value of goals that are the putative outcomes of the decision process and in establishing a relative preference ranking for these goals by taking into account the value of each of the different goals under consideration in a given decision-making scenario. These goal-value signals are then suggested to be used as an input into the on-line computation of action values mediated by brain regions outside of the vmPFC, such as parts of the parietal cortex, supplementary motor cortex, and dorsal striatum. Collectively, these areas can be considered to be constituent elements of a multistage decision process whereby the values of different goals must first be represented and ranked before the value of different courses of action available for the pursuit of those goals can be computed

    How the brain represents the reward value of fat in the mouth.

    Get PDF
    The palatability and pleasantness of the sensory properties of foods drive food selection and intake and may contribute to overeating and obesity. Oral fat texture can make food palatable and pleasant. To analyze its neural basis, we correlated humans’ subjective reports of the pleasantness of the texture and flavor of a high- and low-fat food with a vanilla or strawberry flavor, with neural activations measured with functional magnetic resonance imaging. Activity in the midorbitofrontal and anterior cingulate cortex was correlated with the pleasantness of oral fat texture and in nearby locations with the pleasantness of flavor. The pregenual cingulate cortex showed a supralinear response to the combination of high fat and pleasant, sweet flavor, implicating it in the convergence of fat texture and flavor to produce a representation of highly pleasant stimuli. The subjective reports of oral fattiness were correlated with activations in the midorbitofrontal cortex and ventral striatum. The lateral hypothalamus and amygdala were more strongly activated by high- versus low-fat stimuli. This discovery of which brain regions track the subjective hedonic experience of fat texture will help to unravel possible differences in the neural responses in obese versus lean people to oral fat, a driver of food intake

    Individual differences in the impact of odor-induced emotions on consumer behavior

    Get PDF
    The focus of this dissertation is to understand the role of olfaction (sense of smell) in consumer behavior. The close relationship between olfaction and emotions is the center of this dissertation, examining not only the impact of odors or olfactory imagery induced emotions, but also the downstream influences on consumer decision making and judgment. Another important focus of study is to explore how individual differences in olfaction, specifically hyperosmics (or so called sensitives) and normal, respond similarly or differently to odors. A series of four experiments, including a combination of event-related potential (ERP) studies and behavioral studies, were executed to address these research questions. Both expected and unexpected results were uncovered in this dissertation. As expected, there was a negativity bias for both olfactory groups, as stronger emotions, reflected in stronger Late Positive Potential (LPP) were detected during unpleasant odor conditions compared to pleasant. Additionally, olfactory imagery enhanced emotions for normal individuals through pleasant odor- associated pictures. Also, for sensitive individuals, unpleasant odors have a stronger influence on behavioral outcomes resulting in more severe moral judgment, negative personal evaluations. Unexpectedly, pleasant odors appear to have a negative impact on sensitive individuals, as more health-related symptoms were reported. Furthermore, emotions during olfactory imagery of pleasant odor associated pictures or ads were attenuated. Also, both pleasant and unpleasant odor conditions resulted in increased probability of healthy food choice. Possible explanations and implications are discussed. Call for future research to provide further clarity is outlined. Finally, the role of olfactory imagery was investigated along with sniffing motions. Explained by embodied cognition, sniffing motions resulted in increased emotions, even for sensitive individuals in this case. The effect of sniffing enhanced emotions further impacted advertised product ratings and likelihood to buy ratings for sensitive but not normal individuals. In the end of the dissertation, theoretical and marketing implementations, future research are discussed

    Beyond Face and Voice: A Review of Alexithymia and Emotion Perception in Music, Odor, Taste, and Touch

    Get PDF
    Alexithymia is a clinically relevant personality trait characterized by deficits in recognizing and verbalizing one’s emotions. It has been shown that alexithymia is related to an impaired perception of external emotional stimuli, but previous research focused on emotion perception from faces and voices. Since sensory modalities represent rather distinct input channels it is important to know whether alexithymia also affects emotion perception in other modalities and expressive domains. The objective of our review was to summarize and systematically assess the literature on the impact of alexithymia on the perception of emotional (or hedonic) stimuli in music, odor, taste, and touch. Eleven relevant studies were identified. On the basis of the reviewed research, it can be preliminary concluded that alexithymia might be associated with deficits in the perception of primarily negative but also positive emotions in music and a reduced perception of aversive taste. The data available on olfaction and touch are inconsistent or ambiguous and do not allow to draw conclusions. Future investigations would benefit from a multimethod assessment of alexithymia and control of negative affect. Multimodal research seems necessary to advance our understanding of emotion perception deficits in alexithymia and clarify the contribution of modality-specific and supramodal processing impairments

    Chemosensory Learning in the Cortex

    Get PDF
    Taste is a primary reinforcer. Olfactory–taste and visual–taste association learning takes place in the primate including human orbitofrontal cortex to build representations of flavor. Rapid reversal of this learning can occur using a rule-based learning system that can be reset when an expected taste or flavor reward is not obtained, that is by negative reward prediction error, to which a population of neurons in the orbitofrontal cortex responds. The representation in the orbitofrontal cortex but not the primary taste or olfactory cortex is of the reward value of the visual/olfactory/taste input as shown by devaluation experiments in which food is fed to satiety, and by correlations of the activations with subjective pleasantness ratings in humans. Sensory-specific satiety for taste, olfactory, visual, and oral somatosensory inputs produced by feeding a particular food to satiety is implemented it is proposed by medium-term synaptic adaptation in the orbitofrontal cortex. Cognitive factors, including word-level descriptions, modulate the representation of the reward value of food in the orbitofrontal cortex, and this effect is learned it is proposed by associative modification of top-down synapses onto neurons activated by bottom-up taste and olfactory inputs when both are active in the orbitofrontal cortex. A similar associative synaptic learning process is proposed to be part of the mechanism for the top-down attentional control to the reward value vs. the sensory properties such as intensity of taste and olfactory inputs in the orbitofrontal cortex, as part of a biased activation theory of selective attention

    Contribution of perceptual and emotional skills to moral decision-making

    Get PDF
    Moral decision-making is the ability to choose an optimal course of action based on a system of norms and values that guides our behaviour in a community. Even though the models of moral decision-making have mainly focused on cognitive reasoning and emotions, moral decisions - like all kind of decisions - are taken within a context and in interaction with environmental factors. Therefore, the role played by such factors is critical in order to explain how a decision is reached. In Chapter 1, after a systematic overview of the different theoretical models proposed to explain morality, I discuss the evidence in favour of the role played by sensory stimuli in moral choices, focusing on a recent meta-analysis (Landy & Goodwin, 2015a) that showed that besides vision, chemosensory stimuli play a central role in the moral decision process. Then, I explore the link between odours and morality, starting from the disgust emotion, arguing that olfactory stimuli could extend their effects to morality via mechanisms unrelated to disgust, as suggested by the shared neural underpinnings underlying olfaction and moral choices..

    Emotional and motivational pain processing : current state of knowledge and perspectives in translational research

    Get PDF
    Pain elicits fear and anxiety and promotes escape, avoidance, and adaptive behaviors that are essential for survival. When pain persists, motivational priority and attention shift to pain-related information. Such a shift often results in impaired functionality, leading to maladaptive pain-related fear and anxiety and escape and avoidance behaviors. Neuroimaging studies in chronic pain patients have established that brain activity, especially in cortical and mesolimbic regions, is different from activity observed during acute pain in control subjects. In this review, we discuss the psychophysiological and neuronal factors that may be associated with the transition to chronic pain. We review information from human studies on neural circuits involved in emotional and motivational pain processing and how these circuits are altered in chronic pain conditions. We then highlight findings from animal research that can increase our understanding of the molecular and cellular mechanisms underlying emotional-motivational pain processing in the brain. Finally, we discuss how translational approaches incorporating results from both human and animal investigations may aid in accelerating the discovery of therapies

    Decreased olfactory discrimination is associated with impulsivity in healthy volunteers

    Get PDF
    In clinical populations, olfactory abilities parallel executive function, implicating shared neuroanatomical substrates within the ventral prefrontal cortex. In healthy individuals, the relationship between olfaction and personality traits or certain cognitive and behavioural characteristics remains unexplored. We therefore tested if olfactory function is associated with trait and behavioural impulsivity in nonclinical individuals. Eighty-three healthy volunteers (50 females) underwent quantitative assessment of olfactory function (odour detection threshold, discrimination, and identifcation). Each participant was rated for trait impulsivity index using the Barratt Impulsiveness Scale and performed a battery of tasks to assess behavioural impulsivity (Stop Signal Task, SST; Information Sampling Task, IST; Delay Discounting). Lower odour discrimination predicted high ratings in non-planning impulsivity (Barratt Non-Planning impulsivity subscale); both, lower odour discrimination and detection threshold predicted low inhibitory control (SST; increased motor impulsivity). These fndings extend clinical observations to support the hypothesis that defcits in olfactory ability are linked to impulsive tendencies within the healthy population. In particular, the relationship between olfactory abilities and behavioural inhibitory control (in the SST) reinforces evidence for functional overlap between neural networks involved in both processes. These fndings may usefully inform the stratifcation of people at risk of impulse-control-related problems and support planning early clinical interventions
    corecore