48,430 research outputs found

    Chinese–Spanish neural machine translation enhanced with character and word bitmap fonts

    Get PDF
    Recently, machine translation systems based on neural networks have reached state-of-the-art results for some pairs of languages (e.g., German–English). In this paper, we are investigating the performance of neural machine translation in Chinese–Spanish, which is a challenging language pair. Given that the meaning of a Chinese word can be related to its graphical representation, this work aims to enhance neural machine translation by using as input a combination of: words or characters and their corresponding bitmap fonts. The fact of performing the interpretation of every word or character as a bitmap font generates more informed vectorial representations. Best results are obtained when using words plus their bitmap fonts obtaining an improvement (over a competitive neural MT baseline system) of almost six BLEU, five METEOR points and ranked coherently better in the human evaluation.Peer ReviewedPostprint (published version

    Non-linear Learning for Statistical Machine Translation

    Full text link
    Modern statistical machine translation (SMT) systems usually use a linear combination of features to model the quality of each translation hypothesis. The linear combination assumes that all the features are in a linear relationship and constrains that each feature interacts with the rest features in an linear manner, which might limit the expressive power of the model and lead to a under-fit model on the current data. In this paper, we propose a non-linear modeling for the quality of translation hypotheses based on neural networks, which allows more complex interaction between features. A learning framework is presented for training the non-linear models. We also discuss possible heuristics in designing the network structure which may improve the non-linear learning performance. Experimental results show that with the basic features of a hierarchical phrase-based machine translation system, our method produce translations that are better than a linear model.Comment: submitted to a conferenc

    Sequence-to-Sequence Models for Punctuated Transcription Combing Lexical and Acoustic Features

    Get PDF
    In this paper we present an extension of our previously described neural machine translation based system for punctuated transcription. This extension allows the system to map from per frame acoustic features to word level representations by replacing the traditional encoder in the encoder-decoder architecture with a hierarchical encoder. Furthermore, we show that a system combining lexical and acoustic features significantly outperforms systems using only a single source of features on all measured punctuation marks. The combination of lexical and acoustic features achieves a significant improvement in F-Measure of 1.5 absolute over the purely lexical neural machine translation based system
    • …
    corecore