19,786 research outputs found

    Anticipated synchronization: a metaphorical linear view

    Get PDF
    We study the regime of anticipated synchronization recently described on a number of dynamical systems including chaotic and noisy ones. We use simple linear caricatures to show the minimal setups able to reproduce the basic facts described.Comment: 7 pages,5 figure

    Neural synchrony in cortical networks : history, concept and current status

    Get PDF
    Following the discovery of context-dependent synchronization of oscillatory neuronal responses in the visual system, the role of neural synchrony in cortical networks has been expanded to provide a general mechanism for the coordination of distributed neural activity patterns. In the current paper, we present an update of the status of this hypothesis through summarizing recent results from our laboratory that suggest important new insights regarding the mechanisms, function and relevance of this phenomenon. In the first part, we present recent results derived from animal experiments and mathematical simulations that provide novel explanations and mechanisms for zero and nero-zero phase lag synchronization. In the second part, we shall discuss the role of neural synchrony for expectancy during perceptual organization and its role in conscious experience. This will be followed by evidence that indicates that in addition to supporting conscious cognition, neural synchrony is abnormal in major brain disorders, such as schizophrenia and autism spectrum disorders. We conclude this paper with suggestions for further research as well as with critical issues that need to be addressed in future studies

    Neural synchrony in cortical networks : history, concept and current status

    Get PDF
    Following the discovery of context-dependent synchronization of oscillatory neuronal responses in the visual system, the role of neural synchrony in cortical networks has been expanded to provide a general mechanism for the coordination of distributed neural activity patterns. In the current paper, we present an update of the status of this hypothesis through summarizing recent results from our laboratory that suggest important new insights regarding the mechanisms, function and relevance of this phenomenon. In the first part, we present recent results derived from animal experiments and mathematical simulations that provide novel explanations and mechanisms for zero and nero-zero phase lag synchronization. In the second part, we shall discuss the role of neural synchrony for expectancy during perceptual organization and its role in conscious experience. This will be followed by evidence that indicates that in addition to supporting conscious cognition, neural synchrony is abnormal in major brain disorders, such as schizophrenia and autism spectrum disorders. We conclude this paper with suggestions for further research as well as with critical issues that need to be addressed in future studies

    A continuous-time analysis of distributed stochastic gradient

    Full text link
    We analyze the effect of synchronization on distributed stochastic gradient algorithms. By exploiting an analogy with dynamical models of biological quorum sensing -- where synchronization between agents is induced through communication with a common signal -- we quantify how synchronization can significantly reduce the magnitude of the noise felt by the individual distributed agents and by their spatial mean. This noise reduction is in turn associated with a reduction in the smoothing of the loss function imposed by the stochastic gradient approximation. Through simulations on model non-convex objectives, we demonstrate that coupling can stabilize higher noise levels and improve convergence. We provide a convergence analysis for strongly convex functions by deriving a bound on the expected deviation of the spatial mean of the agents from the global minimizer for an algorithm based on quorum sensing, the same algorithm with momentum, and the Elastic Averaging SGD (EASGD) algorithm. We discuss extensions to new algorithms which allow each agent to broadcast its current measure of success and shape the collective computation accordingly. We supplement our theoretical analysis with numerical experiments on convolutional neural networks trained on the CIFAR-10 dataset, where we note a surprising regularizing property of EASGD even when applied to the non-distributed case. This observation suggests alternative second-order in-time algorithms for non-distributed optimization that are competitive with momentum methods.Comment: 9/14/19 : Final version, accepted for publication in Neural Computation. 4/7/19 : Significant edits: addition of simulations, deep network results, and revisions throughout. 12/28/18: Initial submissio

    Synchronization and Redundancy: Implications for Robustness of Neural Learning and Decision Making

    Full text link
    Learning and decision making in the brain are key processes critical to survival, and yet are processes implemented by non-ideal biological building blocks which can impose significant error. We explore quantitatively how the brain might cope with this inherent source of error by taking advantage of two ubiquitous mechanisms, redundancy and synchronization. In particular we consider a neural process whose goal is to learn a decision function by implementing a nonlinear gradient dynamics. The dynamics, however, are assumed to be corrupted by perturbations modeling the error which might be incurred due to limitations of the biology, intrinsic neuronal noise, and imperfect measurements. We show that error, and the associated uncertainty surrounding a learned solution, can be controlled in large part by trading off synchronization strength among multiple redundant neural systems against the noise amplitude. The impact of the coupling between such redundant systems is quantified by the spectrum of the network Laplacian, and we discuss the role of network topology in synchronization and in reducing the effect of noise. A range of situations in which the mechanisms we model arise in brain science are discussed, and we draw attention to experimental evidence suggesting that cortical circuits capable of implementing the computations of interest here can be found on several scales. Finally, simulations comparing theoretical bounds to the relevant empirical quantities show that the theoretical estimates we derive can be tight.Comment: Preprint, accepted for publication in Neural Computatio

    Revealing networks from dynamics: an introduction

    Full text link
    What can we learn from the collective dynamics of a complex network about its interaction topology? Taking the perspective from nonlinear dynamics, we briefly review recent progress on how to infer structural connectivity (direct interactions) from accessing the dynamics of the units. Potential applications range from interaction networks in physics, to chemical and metabolic reactions, protein and gene regulatory networks as well as neural circuits in biology and electric power grids or wireless sensor networks in engineering. Moreover, we briefly mention some standard ways of inferring effective or functional connectivity.Comment: Topical review, 48 pages, 7 figure

    Robust synchronization for 2-D discrete-time coupled dynamical networks

    Get PDF
    This is the post-print version of the Article. The official published version can be accessed from the link below - Copyright @ 2012 IEEEIn this paper, a new synchronization problem is addressed for an array of 2-D coupled dynamical networks. The class of systems under investigation is described by the 2-D nonlinear state space model which is oriented from the well-known Fornasini–Marchesini second model. For such a new 2-D complex network model, both the network dynamics and the couplings evolve in two independent directions. A new synchronization concept is put forward to account for the phenomenon that the propagations of all 2-D dynamical networks are synchronized in two directions with influence from the coupling strength. The purpose of the problem addressed is to first derive sufficient conditions ensuring the global synchronization and then extend the obtained results to more general cases where the system matrices contain either the norm-bounded or the polytopic parameter uncertainties. An energy-like quadratic function is developed, together with the intensive use of the Kronecker product, to establish the easy-to-verify conditions under which the addressed 2-D complex network model achieves global synchronization. Finally, a numerical example is given to illustrate the theoretical results and the effectiveness of the proposed synchronization scheme.This work was supported in part by the National Natural Science Foundation of China under Grants 61028008 and 61174136, the International Science and Technology Cooperation Project of China under Grant No. 2009DFA32050, the Natural Science Foundation of Jiangsu Province of China under Grant BK2011598, the Qing Lan Project of Jiangsu Province of China, the Project sponsored by SRF for ROCS of SEM of China, the Engineering and Physical Sciences Research Council (EPSRC) of the U.K. under Grant GR/S27658/01, the Royal Society of the U.K., and the Alexander von Humboldt Foundation of Germany
    corecore