1,019 research outputs found

    Improving Graph Neural Network Expressivity via Subgraph Isomorphism Counting

    Full text link
    While Graph Neural Networks (GNNs) have achieved remarkable results in a variety of applications, recent studies exposed important shortcomings in their ability to capture the structure of the underlying graph. It has been shown that the expressive power of standard GNNs is bounded by the Weisfeiler-Leman (WL) graph isomorphism test, from which they inherit proven limitations such as the inability to detect and count graph substructures. On the other hand, there is significant empirical evidence, e.g. in network science and bioinformatics, that substructures are often intimately related to downstream tasks. To this end, we propose "Graph Substructure Networks" (GSN), a topologically-aware message passing scheme based on substructure encoding. We theoretically analyse the expressive power of our architecture, showing that it is strictly more expressive than the WL test, and provide sufficient conditions for universality. Importantly, we do not attempt to adhere to the WL hierarchy; this allows us to retain multiple attractive properties of standard GNNs such as locality and linear network complexity, while being able to disambiguate even hard instances of graph isomorphism. We perform an extensive experimental evaluation on graph classification and regression tasks and obtain state-of-the-art results in diverse real-world settings including molecular graphs and social networks. The code is publicly available at https://github.com/gbouritsas/graph-substructure-networks

    Learning to Count Isomorphisms with Graph Neural Networks

    Full text link
    Subgraph isomorphism counting is an important problem on graphs, as many graph-based tasks exploit recurring subgraph patterns. Classical methods usually boil down to a backtracking framework that needs to navigate a huge search space with prohibitive computational costs. Some recent studies resort to graph neural networks (GNNs) to learn a low-dimensional representation for both the query and input graphs, in order to predict the number of subgraph isomorphisms on the input graph. However, typical GNNs employ a node-centric message passing scheme that receives and aggregates messages on nodes, which is inadequate in complex structure matching for isomorphism counting. Moreover, on an input graph, the space of possible query graphs is enormous, and different parts of the input graph will be triggered to match different queries. Thus, expecting a fixed representation of the input graph to match diversely structured query graphs is unrealistic. In this paper, we propose a novel GNN called Count-GNN for subgraph isomorphism counting, to deal with the above challenges. At the edge level, given that an edge is an atomic unit of encoding graph structures, we propose an edge-centric message passing scheme, where messages on edges are propagated and aggregated based on the edge adjacency to preserve fine-grained structural information. At the graph level, we modulate the input graph representation conditioned on the query, so that the input graph can be adapted to each query individually to improve their matching. Finally, we conduct extensive experiments on a number of benchmark datasets to demonstrate the superior performance of Count-GNN.Comment: AAAI-23 main trac

    A Survey on Graph Kernels

    Get PDF
    Graph kernels have become an established and widely-used technique for solving classification tasks on graphs. This survey gives a comprehensive overview of techniques for kernel-based graph classification developed in the past 15 years. We describe and categorize graph kernels based on properties inherent to their design, such as the nature of their extracted graph features, their method of computation and their applicability to problems in practice. In an extensive experimental evaluation, we study the classification accuracy of a large suite of graph kernels on established benchmarks as well as new datasets. We compare the performance of popular kernels with several baseline methods and study the effect of applying a Gaussian RBF kernel to the metric induced by a graph kernel. In doing so, we find that simple baselines become competitive after this transformation on some datasets. Moreover, we study the extent to which existing graph kernels agree in their predictions (and prediction errors) and obtain a data-driven categorization of kernels as result. Finally, based on our experimental results, we derive a practitioner's guide to kernel-based graph classification

    Mining Frequent Graph Patterns with Differential Privacy

    Full text link
    Discovering frequent graph patterns in a graph database offers valuable information in a variety of applications. However, if the graph dataset contains sensitive data of individuals such as mobile phone-call graphs and web-click graphs, releasing discovered frequent patterns may present a threat to the privacy of individuals. {\em Differential privacy} has recently emerged as the {\em de facto} standard for private data analysis due to its provable privacy guarantee. In this paper we propose the first differentially private algorithm for mining frequent graph patterns. We first show that previous techniques on differentially private discovery of frequent {\em itemsets} cannot apply in mining frequent graph patterns due to the inherent complexity of handling structural information in graphs. We then address this challenge by proposing a Markov Chain Monte Carlo (MCMC) sampling based algorithm. Unlike previous work on frequent itemset mining, our techniques do not rely on the output of a non-private mining algorithm. Instead, we observe that both frequent graph pattern mining and the guarantee of differential privacy can be unified into an MCMC sampling framework. In addition, we establish the privacy and utility guarantee of our algorithm and propose an efficient neighboring pattern counting technique as well. Experimental results show that the proposed algorithm is able to output frequent patterns with good precision
    • …
    corecore