169 research outputs found

    Spatial Filtering Pipeline Evaluation of Cortically Coupled Computer Vision System for Rapid Serial Visual Presentation

    Get PDF
    Rapid Serial Visual Presentation (RSVP) is a paradigm that supports the application of cortically coupled computer vision to rapid image search. In RSVP, images are presented to participants in a rapid serial sequence which can evoke Event-related Potentials (ERPs) detectable in their Electroencephalogram (EEG). The contemporary approach to this problem involves supervised spatial filtering techniques which are applied for the purposes of enhancing the discriminative information in the EEG data. In this paper we make two primary contributions to that field: 1) We propose a novel spatial filtering method which we call the Multiple Time Window LDA Beamformer (MTWLB) method; 2) we provide a comprehensive comparison of nine spatial filtering pipelines using three spatial filtering schemes namely, MTWLB, xDAWN, Common Spatial Pattern (CSP) and three linear classification methods Linear Discriminant Analysis (LDA), Bayesian Linear Regression (BLR) and Logistic Regression (LR). Three pipelines without spatial filtering are used as baseline comparison. The Area Under Curve (AUC) is used as an evaluation metric in this paper. The results reveal that MTWLB and xDAWN spatial filtering techniques enhance the classification performance of the pipeline but CSP does not. The results also support the conclusion that LR can be effective for RSVP based BCI if discriminative features are available

    Locate and Beamform: Two-dimensional Locating All-neural Beamformer for Multi-channel Speech Separation

    Full text link
    Recently, stunning improvements on multi-channel speech separation have been achieved by neural beamformers when direction information is available. However, most of them neglect to utilize speaker's 2-dimensional (2D) location cues contained in mixture signal, which limits the performance when two sources come from close directions. In this paper, we propose an end-to-end beamforming network for 2D location guided speech separation merely given mixture signal. It first estimates discriminable direction and 2D location cues, which imply directions the sources come from in multi views of microphones and their 2D coordinates. These cues are then integrated into location-aware neural beamformer, thus allowing accurate reconstruction of two sources' speech signals. Experiments show that our proposed model not only achieves a comprehensive decent improvement compared to baseline systems, but avoids inferior performance on spatial overlapping cases.Comment: Accepted by Interspeech 2023. arXiv admin note: substantial text overlap with arXiv:2212.0340
    • …
    corecore