4,112 research outputs found

    Sparse Overcomplete Word Vector Representations

    Full text link
    Current distributed representations of words show little resemblance to theories of lexical semantics. The former are dense and uninterpretable, the latter largely based on familiar, discrete classes (e.g., supersenses) and relations (e.g., synonymy and hypernymy). We propose methods that transform word vectors into sparse (and optionally binary) vectors. The resulting representations are more similar to the interpretable features typically used in NLP, though they are discovered automatically from raw corpora. Because the vectors are highly sparse, they are computationally easy to work with. Most importantly, we find that they outperform the original vectors on benchmark tasks.Comment: Proceedings of ACL 201

    Sleep-like slow oscillations improve visual classification through synaptic homeostasis and memory association in a thalamo-cortical model

    Full text link
    The occurrence of sleep passed through the evolutionary sieve and is widespread in animal species. Sleep is known to be beneficial to cognitive and mnemonic tasks, while chronic sleep deprivation is detrimental. Despite the importance of the phenomenon, a complete understanding of its functions and underlying mechanisms is still lacking. In this paper, we show interesting effects of deep-sleep-like slow oscillation activity on a simplified thalamo-cortical model which is trained to encode, retrieve and classify images of handwritten digits. During slow oscillations, spike-timing-dependent-plasticity (STDP) produces a differential homeostatic process. It is characterized by both a specific unsupervised enhancement of connections among groups of neurons associated to instances of the same class (digit) and a simultaneous down-regulation of stronger synapses created by the training. This hierarchical organization of post-sleep internal representations favours higher performances in retrieval and classification tasks. The mechanism is based on the interaction between top-down cortico-thalamic predictions and bottom-up thalamo-cortical projections during deep-sleep-like slow oscillations. Indeed, when learned patterns are replayed during sleep, cortico-thalamo-cortical connections favour the activation of other neurons coding for similar thalamic inputs, promoting their association. Such mechanism hints at possible applications to artificial learning systems.Comment: 11 pages, 5 figures, v5 is the final version published on Scientific Reports journa
    • …
    corecore