995 research outputs found

    An empirical analysis of phrase-based and neural machine translation

    Get PDF
    Two popular types of machine translation (MT) are phrase-based and neural machine translation systems. Both of these types of systems are composed of multiple complex models or layers. Each of these models and layers learns different linguistic aspects of the source language. However, for some of these models and layers, it is not clear which linguistic phenomena are learned or how this information is learned. For phrase-based MT systems, it is often clear what information is learned by each model, and the question is rather how this information is learned, especially for its phrase reordering model. For neural machine translation systems, the situation is even more complex, since for many cases it is not exactly clear what information is learned and how it is learned. To shed light on what linguistic phenomena are captured by MT systems, we analyze the behavior of important models in both phrase-based and neural MT systems. We consider phrase reordering models from phrase-based MT systems to investigate which words from inside of a phrase have the biggest impact on defining the phrase reordering behavior. Additionally, to contribute to the interpretability of neural MT systems we study the behavior of the attention model, which is a key component in neural MT systems and the closest model in functionality to phrase reordering models in phrase-based systems. The attention model together with the encoder hidden state representations form the main components to encode source side linguistic information in neural MT. To this end, we also analyze the information captured in the encoder hidden state representations of a neural MT system. We investigate the extent to which syntactic and lexical-semantic information from the source side is captured by hidden state representations of different neural MT architectures.Comment: PhD thesis, University of Amsterdam, October 2020. https://pure.uva.nl/ws/files/51388868/Thesis.pd

    A Survey of Word Reordering in Statistical Machine Translation: Computational Models and Language Phenomena

    Get PDF
    Word reordering is one of the most difficult aspects of statistical machine translation (SMT), and an important factor of its quality and efficiency. Despite the vast amount of research published to date, the interest of the community in this problem has not decreased, and no single method appears to be strongly dominant across language pairs. Instead, the choice of the optimal approach for a new translation task still seems to be mostly driven by empirical trials. To orientate the reader in this vast and complex research area, we present a comprehensive survey of word reordering viewed as a statistical modeling challenge and as a natural language phenomenon. The survey describes in detail how word reordering is modeled within different string-based and tree-based SMT frameworks and as a stand-alone task, including systematic overviews of the literature in advanced reordering modeling. We then question why some approaches are more successful than others in different language pairs. We argue that, besides measuring the amount of reordering, it is important to understand which kinds of reordering occur in a given language pair. To this end, we conduct a qualitative analysis of word reordering phenomena in a diverse sample of language pairs, based on a large collection of linguistic knowledge. Empirical results in the SMT literature are shown to support the hypothesis that a few linguistic facts can be very useful to anticipate the reordering characteristics of a language pair and to select the SMT framework that best suits them.Comment: 44 pages, to appear in Computational Linguistic

    From feature to paradigm: deep learning in machine translation

    No full text
    In the last years, deep learning algorithms have highly revolutionized several areas including speech, image and natural language processing. The specific field of Machine Translation (MT) has not remained invariant. Integration of deep learning in MT varies from re-modeling existing features into standard statistical systems to the development of a new architecture. Among the different neural networks, research works use feed- forward neural networks, recurrent neural networks and the encoder-decoder schema. These architectures are able to tackle challenges as having low-resources or morphology variations. This manuscript focuses on describing how these neural networks have been integrated to enhance different aspects and models from statistical MT, including language modeling, word alignment, translation, reordering, and rescoring. Then, we report the new neural MT approach together with a description of the foundational related works and recent approaches on using subword, characters and training with multilingual languages, among others. Finally, we include an analysis of the corresponding challenges and future work in using deep learning in MTPostprint (author's final draft

    Improving Machine Translation Quality with Denoising Autoencoder and Pre-Ordering

    Get PDF
    The problems in machine translation are related to the characteristics of a family of languages, especially syntactic divergences between languages. In the translation task, having both source and target languages in the same language family is a luxury that cannot be relied upon. The trained models for the task must overcome such differences either through manual augmentations or automatically inferred capacity built into the model design. In this work, we investigated the impact of multiple methods of differing word orders during translation and further experimented in assimilating the source languages syntax to the target word order using pre-ordering. We focused on the field of extremely low-resource scenarios. We also conducted experiments on practical data augmentation techniques that support the reordering capacity of the models through varying the target objectives, adding the secondary goal of removing noises or reordering broken input sequences. In particular, we propose methods to improve translat on quality with the denoising autoencoder in Neural Machine Translation (NMT) and pre-ordering method in Phrase-based Statistical Machine Translation (PBSMT). The experiments with a number of English-Vietnamese pairs show the improvement in BLEU scores as compared to both the NMT and SMT systems

    Translating Phrases in Neural Machine Translation

    Full text link
    Phrases play an important role in natural language understanding and machine translation (Sag et al., 2002; Villavicencio et al., 2005). However, it is difficult to integrate them into current neural machine translation (NMT) which reads and generates sentences word by word. In this work, we propose a method to translate phrases in NMT by integrating a phrase memory storing target phrases from a phrase-based statistical machine translation (SMT) system into the encoder-decoder architecture of NMT. At each decoding step, the phrase memory is first re-written by the SMT model, which dynamically generates relevant target phrases with contextual information provided by the NMT model. Then the proposed model reads the phrase memory to make probability estimations for all phrases in the phrase memory. If phrase generation is carried on, the NMT decoder selects an appropriate phrase from the memory to perform phrase translation and updates its decoding state by consuming the words in the selected phrase. Otherwise, the NMT decoder generates a word from the vocabulary as the general NMT decoder does. Experiment results on the Chinese to English translation show that the proposed model achieves significant improvements over the baseline on various test sets.Comment: Accepted by EMNLP 201

    Adjunction in hierarchical phrase-based translation

    Get PDF
    • …
    corecore