1,071 research outputs found

    Artificial intelligence in the cyber domain: Offense and defense

    Get PDF
    Artificial intelligence techniques have grown rapidly in recent years, and their applications in practice can be seen in many fields, ranging from facial recognition to image analysis. In the cybersecurity domain, AI-based techniques can provide better cyber defense tools and help adversaries improve methods of attack. However, malicious actors are aware of the new prospects too and will probably attempt to use them for nefarious purposes. This survey paper aims at providing an overview of how artificial intelligence can be used in the context of cybersecurity in both offense and defense.Web of Science123art. no. 41

    Hybrid GA-SVM for Efficient Feature Selection in E-mail Classification

    Get PDF
    Feature selection is a problem of global combinatorial optimization in machine learning in which subsets of relevant features are selected to realize robust learning models. The inclusion of irrelevant and redundant features in the dataset can result in poor predictions and high computational overhead. Thus, selecting relevant feature subsets can help reduce the computational cost of feature measurement, speed up learning process and improve model interpretability. SVM classifier has proven inefficient in its inability to produce accurate classification results in the face of large e-mail dataset while it also consumes a lot of computational resources. In this study, a Genetic Algorithm-Support Vector Machine (GA-SVM) feature selection technique is developed to optimize the SVM classification parameters, the prediction accuracy and computation time. Spam assassin dataset was used to validate the performance of the proposed system. The hybrid GA-SVM showed remarkable improvements over SVM in terms of classification accuracy and computation time. Keywords: E-mail Classification, Feature-Selection, Genetic algorithm, Support Vector Machin

    A review of spam email detection: analysis of spammer strategies and the dataset shift problem

    Get PDF
    .Spam emails have been traditionally seen as just annoying and unsolicited emails containing advertisements, but they increasingly include scams, malware or phishing. In order to ensure the security and integrity for the users, organisations and researchers aim to develop robust filters for spam email detection. Recently, most spam filters based on machine learning algorithms published in academic journals report very high performance, but users are still reporting a rising number of frauds and attacks via spam emails. Two main challenges can be found in this field: (a) it is a very dynamic environment prone to the dataset shift problem and (b) it suffers from the presence of an adversarial figure, i.e. the spammer. Unlike classical spam email reviews, this one is particularly focused on the problems that this constantly changing environment poses. Moreover, we analyse the different spammer strategies used for contaminating the emails, and we review the state-of-the-art techniques to develop filters based on machine learning. Finally, we empirically evaluate and present the consequences of ignoring the matter of dataset shift in this practical field. Experimental results show that this shift may lead to severe degradation in the estimated generalisation performance, with error rates reaching values up to 48.81%.SIPublicación en abierto financiada por el Consorcio de Bibliotecas Universitarias de Castilla y León (BUCLE), con cargo al Programa Operativo 2014ES16RFOP009 FEDER 2014-2020 DE CASTILLA Y LEÓN, Actuación:20007-CL - Apoyo Consorcio BUCL

    An Effective Ensemble Approach for Spam Classification

    Get PDF
    The annoyance of spam increasingly plagues both individuals and organizations. Spam classification is an important issue to distinguish the spam with the legitimate email or address. This paper presents a neural network ensemble approach based on a specially designed cooperative coevolution paradigm. Each component network corresponds to a separate subpopulation and all subpopulations are evolved simultaneously. The ensemble performance and the Q-statistic diversity measure are adopted as the objectives, and the component networks are evaluated by using the multi-objective Pareto optimality measure. Experimental results illustrate that the proposed algorithm outperforms the traditional ensemble methods on the spam classification problems

    A Fake Profile Detection Model Using Multistage Stacked Ensemble Classification

    Get PDF
    Fake profile identification on social media platforms is essential for preserving a reliable online community. Previous studies have primarily used conventional classifiers for fake account identification on social networking sites, neglecting feature selection and class balancing to enhance performance. This study introduces a novel multistage stacked ensemble classification model to enhance fake profile detection accuracy, especially in imbalanced datasets. The model comprises three phases: feature selection, base learning, and meta-learning for classification. The novelty of the work lies in utilizing chi-squared feature-class association-based feature selection, combining stacked ensemble and cost-sensitive learning. The research findings indicate that the proposed model significantly enhances fake profile detection efficiency. Employing cost-sensitive learning enhances accuracy on the Facebook, Instagram, and Twitter spam datasets with 95%, 98.20%, and 81% precision, outperforming conventional and advanced classifiers. It is demonstrated that the proposed model has the potential to enhance the security and reliability of online social networks, compared with existing models

    Feature Selection by Multiobjective Optimization: Application to Spam Detection System by Neural Networks and Grasshopper Optimization Algorithm

    Get PDF
    Networks are strained by spam, which also overloads email servers and blocks mailboxes with unwanted messages and files. Setting the protective level for spam filtering might become even more crucial for email users when malicious steps are taken since they must deal with an increase in the number of valid communications being marked as spam. By finding patterns in email communications, spam detection systems (SDS) have been developed to keep track of spammers and filter email activity. SDS has also enhanced the tool for detecting spam by reducing the rate of false positives and increasing the accuracy of detection. The difficulty with spam classifiers is the abundance of features. The importance of feature selection (FS) comes from its role in directing the feature selection algorithm’s search for ways to improve the SDS’s classification performance and accuracy. As a means of enhancing the performance of the SDS, we use a wrapper technique in this study that is based on the multi-objective grasshopper optimization algorithm (MOGOA) for feature extraction and the recently revised EGOA algorithm for multilayer perceptron (MLP) training. The suggested system’s performance was verified using the SpamBase, SpamAssassin, and UK-2011 datasets. Our research showed that our novel approach outperformed a variety of established practices in the literature by as much as 97.5%, 98.3%, and 96.4% respectively.©2022 the Authors. Published by IEEE. This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License. For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/fi=vertaisarvioitu|en=peerReviewed
    corecore