127,825 research outputs found

    Handwriting styles: benchmarks and evaluation metrics

    Full text link
    Evaluating the style of handwriting generation is a challenging problem, since it is not well defined. It is a key component in order to develop in developing systems with more personalized experiences with humans. In this paper, we propose baseline benchmarks, in order to set anchors to estimate the relative quality of different handwriting style methods. This will be done using deep learning techniques, which have shown remarkable results in different machine learning tasks, learning classification, regression, and most relevant to our work, generating temporal sequences. We discuss the challenges associated with evaluating our methods, which is related to evaluation of generative models in general. We then propose evaluation metrics, which we find relevant to this problem, and we discuss how we evaluate the evaluation metrics. In this study, we use IRON-OFF dataset. To the best of our knowledge, there is no work done before in generating handwriting (either in terms of methodology or the performance metrics), our in exploring styles using this dataset.Comment: Submitted to IEEE International Workshop on Deep and Transfer Learning (DTL 2018

    Rapid modulation of sensory processing induced by stimulus conflict

    Get PDF
    Humans are constantly confronted with environmental stimuli that conflict with task goals and can interfere with successful behavior. Prevailing theories propose the existence of cognitive control mechanisms that can suppress the processing of conflicting input and enhance that of the relevant input. However, the temporal cascade of brain processes invoked in response to conflicting stimuli remains poorly understood. By examining evoked electrical brain responses in a novel, hemifield-specific, visual-flanker task, we demonstrate that task-irrelevant conflicting stimulus input is quickly detected in higher level executive regions while simultaneously inducing rapid, recurrent modulation of sensory processing in the visual cortex. Importantly, however, both of these effects are larger for individuals with greater incongruency-related RT slowing. The combination of neural activation patterns and behavioral interference effects suggest that this initial sensory modulation induced by conflicting stimulus inputs reflects performance-degrading attentional distraction because of their incompatibility rather than any rapid task-enhancing cognitive control mechanisms. The present findings thus provide neural evidence for a model in which attentional distraction is the key initial trigger for the temporal cascade of processes by which the human brain responds to conflicting stimulus input in the environment

    A Sub-Character Architecture for Korean Language Processing

    Full text link
    We introduce a novel sub-character architecture that exploits a unique compositional structure of the Korean language. Our method decomposes each character into a small set of primitive phonetic units called jamo letters from which character- and word-level representations are induced. The jamo letters divulge syntactic and semantic information that is difficult to access with conventional character-level units. They greatly alleviate the data sparsity problem, reducing the observation space to 1.6% of the original while increasing accuracy in our experiments. We apply our architecture to dependency parsing and achieve dramatic improvement over strong lexical baselines.Comment: EMNLP 201

    Visual selective behavior can be triggered by a feed-forward process

    Get PDF
    The ventral visual pathway implements object recognition and categorization in a hierarchy of processing areas with neuronal selectivities of increasing complexity. The presence of massive feedback connections within this hierarchy raises the possibility that normal visual processing relies on the use of computational loops. It is not known, however, whether object recognition can be performed at all without such loops (i.e., in a purely feed-forward mode). By analyzing the time course of reaction times in a masked natural scene categorization paradigm, we show that the human visual system can generate selective motor responses based on a single feed-forward pass. We confirm these results using a more constrained letter discrimination task, in which the rapid succession of a target and mask is actually perceived as a distractor. We show that a masked stimulus presented for only 26 msec—and often not consciously perceived—can fully determine the earliest selective motor responses: The neural representations of the stimulus and mask are thus kept separated during a short period corresponding to the feed-forward "sweep." Therefore, feedback loops do not appear to be "mandatory" for visual processing. Rather, we found that such loops allow the masked stimulus to reverberate in the visual system and affect behavior for nearly 150 msec after the feed-forward sweep
    • …
    corecore