113,928 research outputs found

    Rapid modulation of sensory processing induced by stimulus conflict

    Get PDF
    Humans are constantly confronted with environmental stimuli that conflict with task goals and can interfere with successful behavior. Prevailing theories propose the existence of cognitive control mechanisms that can suppress the processing of conflicting input and enhance that of the relevant input. However, the temporal cascade of brain processes invoked in response to conflicting stimuli remains poorly understood. By examining evoked electrical brain responses in a novel, hemifield-specific, visual-flanker task, we demonstrate that task-irrelevant conflicting stimulus input is quickly detected in higher level executive regions while simultaneously inducing rapid, recurrent modulation of sensory processing in the visual cortex. Importantly, however, both of these effects are larger for individuals with greater incongruency-related RT slowing. The combination of neural activation patterns and behavioral interference effects suggest that this initial sensory modulation induced by conflicting stimulus inputs reflects performance-degrading attentional distraction because of their incompatibility rather than any rapid task-enhancing cognitive control mechanisms. The present findings thus provide neural evidence for a model in which attentional distraction is the key initial trigger for the temporal cascade of processes by which the human brain responds to conflicting stimulus input in the environment

    A Comprehensive Survey of Deep Learning in Remote Sensing: Theories, Tools and Challenges for the Community

    Full text link
    In recent years, deep learning (DL), a re-branding of neural networks (NNs), has risen to the top in numerous areas, namely computer vision (CV), speech recognition, natural language processing, etc. Whereas remote sensing (RS) possesses a number of unique challenges, primarily related to sensors and applications, inevitably RS draws from many of the same theories as CV; e.g., statistics, fusion, and machine learning, to name a few. This means that the RS community should be aware of, if not at the leading edge of, of advancements like DL. Herein, we provide the most comprehensive survey of state-of-the-art RS DL research. We also review recent new developments in the DL field that can be used in DL for RS. Namely, we focus on theories, tools and challenges for the RS community. Specifically, we focus on unsolved challenges and opportunities as it relates to (i) inadequate data sets, (ii) human-understandable solutions for modelling physical phenomena, (iii) Big Data, (iv) non-traditional heterogeneous data sources, (v) DL architectures and learning algorithms for spectral, spatial and temporal data, (vi) transfer learning, (vii) an improved theoretical understanding of DL systems, (viii) high barriers to entry, and (ix) training and optimizing the DL.Comment: 64 pages, 411 references. To appear in Journal of Applied Remote Sensin

    Development of the selection and manipulation of self-generated thoughts in adolescence

    Get PDF
    The ability to select and manipulate self-generated (stimulus-independent, SI), as opposed to stimulus-oriented (SO), information, in a controlled and flexible way has previously only been studied in adults. This ability is thought to rely in part on the rostrolateral prefrontal cortex (RLPFC), which continues to mature anatomically during adolescence. We investigated (1) the development of this ability behaviorally, (2) the associated functional brain development, and (3) the link between functional and structural maturation. Participants classified according to their shape letters either presented visually (SO phases) or that they generated in their head by continuing the alphabet sequence (SI phases). SI phases were performed in the presence or absence of distracting letters. A total of 179 participants (7–27 years old) took part in a behavioral study. Resistance to visual distractors exhibited small improvements with age. SI thoughts manipulation and switching between SI and SO thoughts showed steeper performance improvements extending into late adolescence. Thirty-seven participants (11–30 years old) took part in a functional MRI (fMRI) study. SI thought manipulation and switching between SO and SI thought were each associated with brain regions consistently recruited across age. A single frontal brain region in each contrast exhibited decreased activity with age: left inferior frontal gyrus/anterior insula for SI thought manipulation, and right superior RLPFC for switching between SO and SI thoughts. By integrating structural and functional data, we demonstrated that the observed functional changes with age were not purely consequences of structural maturation and thus may reflect the maturation of neurocognitive strategies
    • …
    corecore