16,499 research outputs found

    Functional properties of neurons derived from in vitro reprogrammed postnatal astroglia

    Get PDF
    With the exception of astroglia-like cells in the neurogenic niches of the telencephalic subependymal or hippocampal subgranular zone, astroglia in all other regions of the adult mouse brain do not normally generate neurons. Previous studies have shown, however, that early postnatal cortical astroglia in culture can be reprogrammed to adopt a neuronal fate after forced expression of Pax6, a transcription factor (TF) required for proper neuronal specification during embryonic corticogenesis. Here we show that also the proneural genes neurogenin-2 and Mash1 (mammalian achaete schute homolog 1) possess the ability to reprogram astroglial cells from early postnatal cerebral cortex. By means of time-lapse imaging of green fluorescent astroglia, we provide direct evidence that it is indeed cells with astroglial characteristics that give rise to neurons. Using patch-clamp recordings in culture, we show that astroglia-derived neurons acquire active conductances and are capable of firing action potentials, thus displaying hallmarks of true neurons. However, independent of the TF used for reprogramming, astroglia-derived neurons appear to mature more slowly compared with embryonic-born neurons and fail to generate a functional presynaptic output within the culturing period. However, when cocultured with embryonic cortical neurons, astroglia-derived neurons receive synaptic input, demonstrating that they are competent of establishing a functional postsynaptic compartment. Our data demonstrate that single TFs are capable of inducing a remarkable functional reprogramming of astroglia toward a truly neuronal identity

    IFN-gamma-mediated suppression of coronavirus replication in glial-committed progenitor cells.

    Get PDF
    The neurotropic JHM strain of mouse hepatitis virus (JHMV) replicates primarily within glial cells following intracranial inoculation of susceptible mice, with relative sparing of neurons. This study demonstrates that glial cells derived from neural progenitor cells are susceptible to JHMV infection and that treatment of infected cells with IFN-gamma inhibits viral replication in a dose-dependent manner. Although type I IFN production is muted in JHMV-infected glial cultures, IFN-beta is produced following IFN-gamma-treatment of JHMV-infected cells. Also, direct treatment of infected glial cultures with recombinant mouse IFN-alpha or IFN-beta inhibits viral replication. IFN-gamma-mediated control of JHMV replication is dampened in glial cultures derived from the neural progenitor cells of type I receptor knock-out mice. These data indicate that JHMV is capable of infecting glial cells generated from neural progenitor cells and that IFN-gamma-mediated control of viral replication is dependent, in part, on type I IFN secretion

    Overnight consolidation aids the transfer of statistical knowledge from the medial temporal lobe to the striatum

    Get PDF
    Sleep is important for abstraction of the underlying principles (or gist) which bind together conceptually related stimuli, but little is known about the neural correlates of this process. Here, we investigate this issue using overnight sleep monitoring and functional magnetic resonance imaging (fMRI). Participants were exposed to a statistically structured sequence of auditory tones then tested immediately for recognition of short sequences which conformed to the learned statistical pattern. Subsequently, after consolidation over either 30min or 24h, they performed a delayed test session in which brain activity was monitored with fMRI. Behaviorally, there was greater improvement across 24h than across 30min, and this was predicted by the amount of slow wave sleep (SWS) obtained. Functionally, we observed weaker parahippocampal responses and stronger striatal responses after sleep. Like the behavioral result, these differences in functional response were predicted by the amount of SWS obtained. Furthermore, connectivity between striatum and parahippocampus was weaker after sleep, whereas connectivity between putamen and planum temporale was stronger. Taken together, these findings suggest that abstraction is associated with a gradual shift from the hippocampal to the striatal memory system and that this may be mediated by SWS

    Neural computations underlying action-based decision making in the human brain

    Get PDF
    Action-based decision making involves choices between different physical actions to obtain rewards. To make such decisions the brain needs to assign a value to each action and then compare them to make a choice. Using fMRI in human subjects, we found evidence for action-value signals in supplementary motor cortex. Separate brain regions, most prominently ventromedial prefrontal cortex, were involved in encoding the expected value of the action that was ultimately taken. These findings differentiate two main forms of value signals in the human brain: those relating to the value of each available action, likely reflecting signals that are a precursor of choice, and those corresponding to the expected value of the action that is subsequently chosen, and therefore reflecting the consequence of the decision process. Furthermore, we also found signals in the dorsomedial frontal cortex that resemble the output of a decision comparator, which implicates this region in the computation of the decision itself

    Aneurysmal Subarachnoid Hemorrhage and Resolution of Inflammation

    Get PDF
    Aneurysmal subarachnoid hemorrhage (SAH) is a severe life-threatening disease and an important source of neurological disability. Therapeutic interventions over the last few decades have repeatedly failed to improve functional outcome after SAH; however, resolution of inflammation has largely been ignored as a potential therapeutic target. The omega-3 fatty acids (FAs), eicosapentaenoic acid (EPA), and docosahexaenoic acid (DHA) are the precursors of key mediators involved in resolution of inflammation and endogenous neuroprotection. EPA also plays a major role in microvascular function, and DHA accretion in the brain is crucial for normal neuronal function. Although considerable loss of brain DHA has been identified in SAH patients, the pathological significance of this process has also been overlooked. Current Western diets provide insufficient amounts of omega-3 FAs to compensate for the loss of brain DHA following SAH. Here, we review the rationale for future clinical trials of omega-3 FAs in SAH. Furthermore, the potential role of defective resolution of inflammation in the growth and rupture of intracranial aneurysms is inferred from recent findings in atherosclerosis and nutrition. The novel concepts of resolution of inflammation and endogenous neuroprotective signaling may open new avenues for public health interventions and innovative research in intracranial aneurysms and SAH

    Essential role for PDGF signaling in ophthalmic trigeminal placode induction

    Get PDF
    Much of the peripheral nervous system of the head is derived from ectodermal thickenings, called placodes, that delaminate or invaginate to form cranial ganglia and sense organs. The trigeminal ganglion, which arises lateral to the midbrain, forms via interactions between the neural tube and adjacent ectoderm. This induction triggers expression of Pax3, ingression of placode cells and their differentiation into neurons. However, the molecular nature of the underlying signals remains unknown. Here, we investigate the role of PDGF signaling in ophthalmic trigeminal placode induction. By in situ hybridization, PDGF receptor β is expressed in the cranial ectoderm at the time of trigeminal placode formation, with the ligand PDGFD expressed in the midbrain neural folds. Blocking PDGF signaling in vitro results in a dose-dependent abrogation of Pax3 expression in recombinants of quail ectoderm with chick neural tube that recapitulate placode induction. In ovo microinjection of PDGF inhibitor causes a similar loss of Pax3 as well as the later placodal marker, CD151, and failure of neuronal differentiation. Conversely, microinjection of exogenous PDGFD increases the number of Pax3+ cells in the trigeminal placode and neurons in the condensing ganglia. Our results provide the first evidence for a signaling pathway involved in ophthalmic (opV) trigeminal placode induction

    The early stages of heart development: insights from chicken embryos

    Get PDF
    The heart is the first functioning organ in the developing embryo and the detailed understanding of the molecular and cellular mechanisms involved in its formation provides insights into congenital malformations affecting its function and therefore the survival of the organism. Because many developmental mechanisms are highly conserved, it is possible to extrapolate from observations made in invertebrate and vertebrate model organisms to human. This review will highlight the contributions made through studying heart development in avian embryos, particularly the chicken. The major advantage of chick embryos is their accessibility for surgical manipulations and functional interference approaches, both gain- and loss-of-function. In addition to experiments performed in ovo, the dissection of tissues for ex vivo culture, genomic or biochemical approaches, is straightforward. Furthermore, embryos can be cultured for time-lapse imaging, which enables tracking of fluorescently labeled cells and detailed analyses of tissue morphogenesis. Owing to these features, investigations in chick embryos have led to important discoveries, often complementing genetic studies in mouse and zebrafish. As well as including some historical aspects, we cover here some of the crucial advances made in understanding of early heart development using the chicken model
    • …
    corecore