32 research outputs found

    Automatic characterization and generation of music loops and instrument samples for electronic music production

    Get PDF
    Repurposing audio material to create new music - also known as sampling - was a foundation of electronic music and is a fundamental component of this practice. Currently, large-scale databases of audio offer vast collections of audio material for users to work with. The navigation on these databases is heavily focused on hierarchical tree directories. Consequently, sound retrieval is tiresome and often identified as an undesired interruption in the creative process. We address two fundamental methods for navigating sounds: characterization and generation. Characterizing loops and one-shots in terms of instruments or instrumentation allows for organizing unstructured collections and a faster retrieval for music-making. The generation of loops and one-shot sounds enables the creation of new sounds not present in an audio collection through interpolation or modification of the existing material. To achieve this, we employ deep-learning-based data-driven methodologies for classification and generation.Repurposing audio material to create new music - also known as sampling - was a foundation of electronic music and is a fundamental component of this practice. Currently, large-scale databases of audio offer vast collections of audio material for users to work with. The navigation on these databases is heavily focused on hierarchical tree directories. Consequently, sound retrieval is tiresome and often identified as an undesired interruption in the creative process. We address two fundamental methods for navigating sounds: characterization and generation. Characterizing loops and one-shots in terms of instruments or instrumentation allows for organizing unstructured collections and a faster retrieval for music-making. The generation of loops and one-shot sounds enables the creation of new sounds not present in an audio collection through interpolation or modification of the existing material. To achieve this, we employ deep-learning-based data-driven methodologies for classification and generation

    DrumGAN: Synthesis of Drum Sounds With Timbral Feature Conditioning Using Generative Adversarial Networks

    Full text link
    Synthetic creation of drum sounds (e.g., in drum machines) is commonly performed using analog or digital synthesis, allowing a musician to sculpt the desired timbre modifying various parameters. Typically, such parameters control low-level features of the sound and often have no musical meaning or perceptual correspondence. With the rise of Deep Learning, data-driven processing of audio emerges as an alternative to traditional signal processing. This new paradigm allows controlling the synthesis process through learned high-level features or by conditioning a model on musically relevant information. In this paper, we apply a Generative Adversarial Network to the task of audio synthesis of drum sounds. By conditioning the model on perceptual features computed with a publicly available feature-extractor, intuitive control is gained over the generation process. The experiments are carried out on a large collection of kick, snare, and cymbal sounds. We show that, compared to a specific prior work based on a U-Net architecture, our approach considerably improves the quality of the generated drum samples, and that the conditional input indeed shapes the perceptual characteristics of the sounds. Also, we provide audio examples and release the code used in our experiments.Comment: 8 pages, 1 figure, 3 tables, accepted in Proc. of the 21st International Society for Music Information Retrieval (ISMIR2020

    Neural Synthesis of Footsteps Sound Effects with Generative Adversarial Networks

    Get PDF
    Footsteps are among the most ubiquitous sound effects in multimedia applications. There is substantial research into understanding the acoustic features and developing synthesis models for footstep sound effects. In this paper, we present a first attempt at adopting neural synthesis for this task. We implemented two GAN-based architectures and compared the results with real recordings as well as six traditional sound synthesis methods. Our architectures reached realism scores as high as recorded samples, showing encouraging results for the task at hand

    Automated Rhythmic Transformation of Drum Recordings

    Get PDF
    Within the creative industries, music information retrieval techniques are now being applied in a variety of music creation and production applications. Audio artists incorporate techniques from music informatics and machine learning (e.g., beat and metre detection) for generative content creation and manipulation systems within the music production setting. Here musicians, desiring a certain sound or aesthetic influenced by the style of artists they admire, may change or replace the rhythmic pattern and sound characteristics (i.e., timbre) of drums in their recordings with those from an idealised recording (e.g., in processes of redrumming and mashup creation). Automated transformation systems for rhythm and timbre can be powerful tools for music producers, allowing them to quickly and easily adjust the different elements of a drum recording to fit the overall style of a song. The aim of this thesis is to develop systems for automated transformation of rhythmic patterns of drum recordings using a subset of techniques from deep learning called deep generative models (DGM) for neural audio synthesis. DGMs such as autoencoders and generative adversarial networks have been shown to be effective for transforming musical signals in a variety of genres as well as for learning the underlying structure of datasets for generation of new audio examples. To this end, modular deep learning-based systems are presented in this thesis with evaluations which measure the extent of the rhythmic modifications generated by different modes of transformation, which include audio style transfer, drum translation and latent space manipulation. The evaluation results underscore both the strengths and constraints of DGMs for transformation of rhythmic patterns as well as neural synthesis of drum sounds within a variety of musical genres. New audio style transfer (AST) functions were specifically designed for mashup-oriented drum recording transformation. The designed loss objectives lowered the computational demands of the AST algorithm and offered rhythmic transformation capabilities which adhere to a larger rhythmic structure of the input to generate music that is both creative and realistic. To extend the transformation possibilities of DGMs, systems based on adversarial autoencoders (AAE) were proposed for drum translation and continuous rhythmic transformation of bar-length patterns. The evaluations which investigated the lower dimensional representations of the latent space of the proposed system based on AAEs with a Gaussian mixture prior (AAE-GM) highlighted the importance of the structure of the disentangled latent distributions of AAE-GM. Furthermore, the proposed system demonstrated improved performance, as evidenced by higher reconstruction metrics, when compared to traditional autoencoder models. This implies that the system can more accurately recreate complex drum sounds, ensuring that the produced rhythmic transformation maintains richness of the source material. For music producers, this means heightened fidelity in drum synthesis and the potential for more expressive and varied drum tracks, enhancing the creativity in music production. This work also enhances neural drum synthesis by introducing a new, diverse dataset of kick, snare, and hi-hat drum samples, along with multiple drum loop datasets for model training and evaluation. Overall, the work in this thesis increased the profile of the field and hopefully will attract more attention and resources to the area, which will help drive future research and development of neural rhythmic transformation systems

    Adversarial Synthesis of Drum Sounds

    Get PDF
    Recent advancements in generative audio synthesis have allowed for the development of creative tools for generation and manipulation of audio. In this paper, a strategy is proposed for the synthesis of drum sounds using generative adversarial networks (GANs). The system is based on a conditional Wasserstein GAN, which learns the underlying probability distribution of a dataset compiled of labeled drum sounds. Labels are used to condition the system on an integer value that can be used to generate audio with the desired characteristics. Synthesis is controlled by an input latent vector that enables continuous exploration and interpolation of generated waveforms. Additionally we experiment with a training method that progressively learns to generate audio at different temporal resolutions. We present our results and discuss the benefits of generating audio with GANs along with sound examples and demonstrations

    Neural Synthesis of Footsteps Sound Effects with Generative Adversarial Networks

    Get PDF
    Footsteps are among the most ubiquitous sound effects in multimedia applications. There is substantial research into understanding the acoustic features and developing synthesis models for footstep sound effects. In this paper, we present a first attempt at adopting neural synthesis for this task. We implemented two GAN-based architectures and compared the results with real recordings as well as six traditional sound synthesis methods. Our architectures reached realism scores as high as recorded samples, showing encouraging results for the task at hand

    Separation of musical sources and structure from single-channel polyphonic recordings

    Get PDF
    EThOS - Electronic Theses Online ServiceGBUnited Kingdo

    Deep Learning Methods for Instrument Separation and Recognition

    Get PDF
    This thesis explores deep learning methods for timbral information processing in polyphonic music analysis. It encompasses two primary tasks: Music Source Separation (MSS) and Instrument Recognition, with focus on applying domain knowledge and utilising dense arrangements of skip-connections in the frameworks in order to reduce the number of trainable parameters and create more efficient models. Musically-motivated Convolutional Neural Network (CNN) architectures are introduced, emphasizing kernels with vertical, square, and horizontal shapes. This design choice allows for the extraction of essential harmonic and percussive features, which enhances the discrimination of different instruments. Notably, this methodology proves valuable for Harmonic-Percussive Source Separation (HPSS) and instrument recognition tasks. A significant challenge in MSS is generalising to new instrument types and music styles. To address this, a versatile framework for adversarial unsupervised domain adaptation for source separation is proposed, particularly beneficial when labeled data for specific instruments is unavailable. The curation of the Tap & Fiddle dataset is another contribution of the research, offering mixed and isolated stem recordings of traditional Scandinavian fiddle tunes, along with foot-tapping accompaniments, fostering research in source separation and metrical expression analysis within these musical styles. Since our perception of timbre is affected in different ways by transient and stationary parts of sound, the research investigates the potential of Transient Stationary-Noise Decomposition (TSND) as a preprocessing step for frame-level recognition. A method that performs TSND of spectrograms and feeds the decomposed spectrograms to a neural classifier is proposed. Furthermore, this thesis introduces a novel deep learning-based approach for pitch streaming, treating the task as a note-level instrument classification. Such an approach is modular, meaning that it can also successfully stream predicted note-events and not only labelled ground truth note-event information to corresponding instruments. Therefore, the proposed pitch streaming method enables third-party multi-pitch estimation algorithms to perform multi-instrument AMT

    Plecto: Investigating the Musical Affordances of Continuous Time Recurrent Neural Networks

    Full text link
    "Plecto: Investigating the musical affordances of Continuous Time Recurrent Neural Networks" is a practice-based research project that investigates how continuous time recurrent neural networks (CTRNNs) can be applied to the problem of achieving gestural control in improvised electronic music. One of the challenges of improvising using computers is manipulating different compositional layers during a performance while maintaining granular and expressive control. Artists turn to concepts such as artificial life to solve this problem and pursue software agents with complex, responsive and organic qualities that lead to the perception of lifelikeness. Guided by this theme, I propose a design for a low frequency oscillator (LFO), called Plecto, for use within existing composition workflows that harnesses the idiosyncratic behaviours of CTRNNs as a gestural agent within improvised electronic music performances. CTRNNs have been used in studies of biological modelling such as animal locomotion, and also of minimally cognitive behaviours such as basic object perception. Their ability to produce lifelike abstract forms makes them well suited as a source of gestural control. Oliver Bown and Sebastian Lexer have applied CTRNNs to musical event generation, using evolutionary algorithms (EA) to search for different CTRNN behaviours. I have extended this approach, using a novelty search (NS) variant for the open-ended discovery of CTRNN configurations, each exhibiting novel behaviours that can be applied to different musical problems. Through a series of computational studies, I have explored the lifelike qualities of CTRNNs best suited for gestural control and a novelty search algorithm design for their discovery. An iterative design process was also undertaken, establishing clear design principles adopted to build a usable representation of the CTRNN algorithm within an LFO device built for the Ableton Live environment. Evaluation of the tool was conducted through a user survey and practice-based case studies that incorporate the device into my own improvised electronic music workflow as a gestural agent. The primary outcomes of this research are a suite of software that can be adopted by the broader community of practitioners and a series of compositions reflecting the impacts of the CTRNN algorithm on my creative process

    Development and exploration of a timbre space representation of audio

    Get PDF
    Sound is an important part of the human experience and provides valuable information about the world around us. Auditory human-computer interfaces do not have the same richness of expression and variety as audio in the world, and it has been said that this is primarily due to a lack of reasonable design tools for audio interfaces.There are a number of good guidelines for audio design and a strong psychoacoustic understanding of how sounds are interpreted. There are also a number of sound manipulation techniques developed for computer music. This research takes these ideas as the basis for an audio interface design system. A proof-of-concept of this system has been developed in order to explore the design possibilities allowed by the new system.The core of this novel audio design system is the timbre space. This provides a multi-dimensional representation of a sound. Each sound is represented as a path in the timbre space and this path can be manipulated geometrically. Several timbre spaces are compared to determine which amongst them is the best one for audio interface design. The various transformations available in the timbre space are discussed and the perceptual relevance of two novel transformations are explored by encoding "urgency" as a design parameter.This research demonstrates that the timbre space is a viable option for audio interface design and provides novel features that are not found in current audio design systems. A number of problems with the approach and some suggested solutions are discussed. The timbre space opens up new possibilities for audio designers to explore combinations of sounds and sound design based on perceptual cues rather than synthesiser parameters
    corecore