199,641 research outputs found

    Sequence to Sequence Learning for Query Expansion

    Full text link
    Using sequence to sequence algorithms for query expansion has not been explored yet in Information Retrieval literature nor in Question-Answering's. We tried to fill this gap in the literature with a custom Query Expansion engine trained and tested on open datasets. Starting from open datasets, we built a Query Expansion training set using sentence-embeddings-based Keyword Extraction. We therefore assessed the ability of the Sequence to Sequence neural networks to capture expanding relations in the words embeddings' space.Comment: 8 pages, 2 figures, AAAI-19 Student Abstract and Poster Progra

    Distinctive-attribute Extraction for Image Captioning

    Full text link
    Image captioning, an open research issue, has been evolved with the progress of deep neural networks. Convolutional neural networks (CNNs) and recurrent neural networks (RNNs) are employed to compute image features and generate natural language descriptions in the research. In previous works, a caption involving semantic description can be generated by applying additional information into the RNNs. In this approach, we propose a distinctive-attribute extraction (DaE) which explicitly encourages significant meanings to generate an accurate caption describing the overall meaning of the image with their unique situation. Specifically, the captions of training images are analyzed by term frequency-inverse document frequency (TF-IDF), and the analyzed semantic information is trained to extract distinctive-attributes for inferring captions. The proposed scheme is evaluated on a challenge data, and it improves an objective performance while describing images in more detail.Comment: 14 main pages, 4 supplementary page

    Convolutional Drift Networks for Video Classification

    Full text link
    Analyzing spatio-temporal data like video is a challenging task that requires processing visual and temporal information effectively. Convolutional Neural Networks have shown promise as baseline fixed feature extractors through transfer learning, a technique that helps minimize the training cost on visual information. Temporal information is often handled using hand-crafted features or Recurrent Neural Networks, but this can be overly specific or prohibitively complex. Building a fully trainable system that can efficiently analyze spatio-temporal data without hand-crafted features or complex training is an open challenge. We present a new neural network architecture to address this challenge, the Convolutional Drift Network (CDN). Our CDN architecture combines the visual feature extraction power of deep Convolutional Neural Networks with the intrinsically efficient temporal processing provided by Reservoir Computing. In this introductory paper on the CDN, we provide a very simple baseline implementation tested on two egocentric (first-person) video activity datasets.We achieve video-level activity classification results on-par with state-of-the art methods. Notably, performance on this complex spatio-temporal task was produced by only training a single feed-forward layer in the CDN.Comment: Published in IEEE Rebooting Computin

    Crisis Event Extraction Service (CREES) - Automatic Detection and Classification of Crisis-related Content on Social Media

    Get PDF
    Social media posts tend to provide valuable reports during crises. However, this information can be hidden in large amounts of unrelated documents. Providing tools that automatically identify relevant posts, event types (e.g., hurricane, floods, etc.) and information categories (e.g., reports on affected individuals, donations and volunteering, etc.) in social media posts is vital for their efficient handling and consumption. We introduce the Crisis Event Extraction Service (CREES), an open-source web API that automatically classifies posts during crisis situations. The API provides annotations for crisis-related documents, event types and information categories through an easily deployable and accessible web API that can be integrated into multiple platform and tools. The annotation service is backed by Convolutional Neural Networks (CNNs) and validated against traditional machine learning models. Results show that the CNN-based API results can be relied upon when dealing with specific crises with the benefits associated with the usage word embeddings
    • …
    corecore