796 research outputs found

    The use of dual-wavelength airborne laser scanning for estimating tree species composition and species-specific stem volumes in a boreal forest

    Get PDF
    The estimation of species composition and species-specific stem volumes are critical components of many forest inventories. The use of airborne laser scanning with multiple spectral channels may prove instrumental for the cost-efficient retrieval of these forest variables. In this study, we scanned a boreal forest using two channels: 532 nm (green) and 1064 nm (near infrared). The data was used in a two-step methodology to (1) classify species, and (2) estimate species-specific stem volume at the level of individual tree crowns. The classification of pines, spruces and broadleaves involved linear discriminant analysis (LDA) and resulted in an overall accuracy of 91.1 % at the level of individual trees. For the estimation of stem volume, we employed species-specific k-nearest neighbors models and evaluated the performance at the plot level for 256 field plots located in central Sweden. This resulted in root-mean-square errors (RMSE) of 36 m3/ha (16 %) for total volume, 40 m3/ha (27 %) for pine volume, 32 m3/ha (48 %) for spruce volume, and 13 m3/ha (87 %) for broadleaf volume. We also simulated the use of a monospectral near infrared (NIR) scanner by excluding features based on the green channel. This resulted in lower overall accuracy for the species classification (86.8 %) and an RMSE of 41 m3/ha (18 %) for the estimation of total stem volume. The largest difference when only the NIR channel was used was the difficulty to accurately identify broadleaves and estimate broadleaf stem volume. When excluding the green channel, RMSE for broadleaved volume increased from 13 to 26 m3/ha. The study thus demonstrates the added benefit of the green channel for the estimation of both species composition and species-specific stem volumes. In addition, we investigated how tree height influences the results where shorter trees were found to be more difficult to classify correctly

    Operational prediction of forest attributes using standardised harvester data and airborne laser scanning data in Sweden

    Get PDF
    With cut-to-length harvesters, tree stems are measured and cut into different timber assortments at the time of felling. These measurement data collected from harvested trees can be used for decision-support at different levels of the forest industry chain and also for forest planning when combined with remote sensing data. The aim of this study was to examine the operational application for predicting merchantable stem volume, basal area, basal area-weighted mean tree height, basal area-weighted mean stem diameter and diameter distribution at stand level with airborne laser scanning data and harvester data from final felling operations. The area-based approach using k-MSN estimation was evaluated for six different variants of spatial partitioning. The results were stand level predictions with relative root mean square errors of 11-14%, 10-15%, 3-4% and 6-7% for merchantable stem volume, basal area, basal area-weighted mean tree height and basal area-weighted mean stem diameter, respectively. Predictions of stem diameter distributions resulted in error indices of 0.13-0.14. The results demonstrate that harvester data from cut forests may serve as ground truth to airborne laser scanning data and provide accurate forest estimates at stand level. The predicted diameter distributions could be useful for improving yield estimates and bucking simulations

    Derivation of forest inventory parameters from high-resolution satellite imagery for the Thunkel area, Northern Mongolia. A comparative study on various satellite sensors and data analysis techniques.

    Get PDF
    With the demise of the Soviet Union and the transition to a market economy starting in the 1990s, Mongolia has been experiencing dramatic changes resulting in social and economic disparities and an increasing strain on its natural resources. The situation is exacerbated by a changing climate, the erosion of forestry related administrative structures, and a lack of law enforcement activities. Mongolia’s forests have been afflicted with a dramatic increase in degradation due to human and natural impacts such as overexploitation and wildfire occurrences. In addition, forest management practices are far from being sustainable. In order to provide useful information on how to viably and effectively utilise the forest resources in the future, the gathering and analysis of forest related data is pivotal. Although a National Forest Inventory was conducted in 2016, very little reliable and scientifically substantiated information exists related to a regional or even local level. This lack of detailed information warranted a study performed in the Thunkel taiga area in 2017 in cooperation with the GIZ. In this context, we hypothesise that (i) tree species and composition can be identified utilising the aerial imagery, (ii) tree height can be extracted from the resulting canopy height model with accuracies commensurate with field survey measurements, and (iii) high-resolution satellite imagery is suitable for the extraction of tree species, the number of trees, and the upscaling of timber volume and basal area based on the spectral properties. The outcomes of this study illustrate quite clearly the potential of employing UAV imagery for tree height extraction (R2 of 0.9) as well as for species and crown diameter determination. However, in a few instances, the visual interpretation of the aerial photographs were determined to be superior to the computer-aided automatic extraction of forest attributes. In addition, imagery from various satellite sensors (e.g. Sentinel-2, RapidEye, WorldView-2) proved to be excellently suited for the delineation of burned areas and the assessment of tree vigour. Furthermore, recently developed sophisticated classifying approaches such as Support Vector Machines and Random Forest appear to be tailored for tree species discrimination (Overall Accuracy of 89%). Object-based classification approaches convey the impression to be highly suitable for very high-resolution imagery, however, at medium scale, pixel-based classifiers outperformed the former. It is also suggested that high radiometric resolution bears the potential to easily compensate for the lack of spatial detectability in the imagery. Quite surprising was the occurrence of dark taiga species in the riparian areas being beyond their natural habitat range. The presented results matrix and the interpretation key have been devised as a decision tool and/or a vademecum for practitioners. In consideration of future projects and to facilitate the improvement of the forest inventory database, the establishment of permanent sampling plots in the Mongolian taigas is strongly advised.2021-06-0

    Machine Learning Approaches for Natural Resource Data

    Get PDF
    Abstract Real life applications involving efficient management of natural resources are dependent on accurate geographical information. This information is usually obtained by manual on-site data collection, via automatic remote sensing methods, or by the mixture of the two. Natural resource management, besides accurate data collection, also requires detailed analysis of this data, which in the era of data flood can be a cumbersome process. With the rising trend in both computational power and storage capacity, together with lowering hardware prices, data-driven decision analysis has an ever greater role. In this thesis, we examine the predictability of terrain trafficability conditions and forest attributes by using a machine learning approach with geographic information system data. Quantitative measures on the prediction performance of terrain conditions using natural resource data sets are given through five distinct research areas located around Finland. Furthermore, the estimation capability of key forest attributes is inspected with a multitude of modeling and feature selection techniques. The research results provide empirical evidence on whether the used natural resource data is sufficiently accurate enough for practical applications, or if further refinement on the data is needed. The results are important especially to forest industry since even slight improvements to the natural resource data sets utilized in practice can result in high saves in terms of operation time and costs. Model evaluation is also addressed in this thesis by proposing a novel method for estimating the prediction performance of spatial models. Classical model goodness of fit measures usually rely on the assumption of independently and identically distributed data samples, a characteristic which normally is not true in the case of spatial data sets. Spatio-temporal data sets contain an intrinsic property called spatial autocorrelation, which is partly responsible for breaking these assumptions. The proposed cross validation based evaluation method provides model performance estimation where optimistic bias due to spatial autocorrelation is decreased by partitioning the data sets in a suitable way. Keywords: Open natural resource data, machine learning, model evaluationTiivistelmä Käytännön sovellukset, joihin sisältyy luonnonvarojen hallintaa ovat riippuvaisia tarkasta paikkatietoaineistosta. Tämä paikkatietoaineisto kerätään usein manuaalisesti paikan päällä, automaattisilla kaukokartoitusmenetelmillä tai kahden edellisen yhdistelmällä. Luonnonvarojen hallinta vaatii tarkan aineiston keräämisen lisäksi myös sen yksityiskohtaisen analysoinnin, joka tietotulvan aikakautena voi olla vaativa prosessi. Nousevan laskentatehon, tallennustilan sekä alenevien laitteistohintojen myötä datapohjainen päätöksenteko on yhä suuremmassa roolissa. Tämä väitöskirja tutkii maaston kuljettavuuden ja metsäpiirteiden ennustettavuutta käyttäen koneoppimismenetelmiä paikkatietoaineistojen kanssa. Maaston kuljettavuuden ennustamista mitataan kvantitatiivisesti käyttäen kaukokartoitusaineistoa viideltä eri tutkimusalueelta ympäri Suomea. Tarkastelemme lisäksi tärkeimpien metsäpiirteiden ennustettavuutta monilla eri mallintamistekniikoilla ja piirteiden valinnalla. Väitöstyön tulokset tarjoavat empiiristä todistusaineistoa siitä, onko käytetty luonnonvaraaineisto riittävän laadukas käytettäväksi käytännön sovelluksissa vai ei. Tutkimustulokset ovat tärkeitä erityisesti metsäteollisuudelle, koska pienetkin parannukset luonnonvara-aineistoihin käytännön sovelluksissa voivat johtaa suuriin säästöihin niin operaatioiden ajankäyttöön kuin kuluihin. Tässä työssä otetaan kantaa myös mallin evaluointiin esittämällä uuden menetelmän spatiaalisten mallien ennustuskyvyn estimointiin. Klassiset mallinvalintakriteerit nojaavat yleensä riippumattomien ja identtisesti jakautuneiden datanäytteiden oletukseen, joka ei useimmiten pidä paikkaansa spatiaalisilla datajoukoilla. Spatio-temporaaliset datajoukot sisältävät luontaisen ominaisuuden, jota kutsutaan spatiaaliseksi autokorrelaatioksi. Tämä ominaisuus on osittain vastuussa näiden oletusten rikkomisesta. Esitetty ristiinvalidointiin perustuva evaluointimenetelmä tarjoaa mallin ennustuskyvyn mitan, missä spatiaalisen autokorrelaation vaikutusta vähennetään jakamalla datajoukot sopivalla tavalla. Avainsanat: Avoin luonnonvara-aineisto, koneoppiminen, mallin evaluoint

    Two-phase forest inventory using very-high-resolution laser scanning

    Get PDF
    In this study, we compared a two-phase laser-scanning-based forest inventory of stands versus a traditional field inventory using sample plots. The two approaches were used to estimate stem volume (VOL), Lorey's mean height (HL), Lorey's stem diameter (DL), and VOL per tree species in a study area in Sweden. The estimates were compared at the stand level with the harvested reference values obtained using a forest harvester. In the first phase, a helicopter acquired airborne laser scanning (ALS) data with >500 points/m2 along 50-m wide strips across the stands. These strips intersected systematic plots in phase two, where terrestrial laser scanning (TLS) was used to model DL for individual trees. In total, phase two included 99 plots across 10 boreal forest stands in Sweden (lat 62.9 degrees N, long 16.9 degrees E). The single trees were segmented in both the ALS and TLS data and linked to each other. The very-high-resolution ALS data enabled us to directly measure tree heights and also classify tree species using a convolutional neural network. Stem volume was predicted from the predicted DBH and the estimated height, using national models, and aggregated at the stand level. The study demonstrates a workflow to derive forest variables and stand-level statistics that has potential to replace many manual field inventories thanks to its time efficiency and improved accuracy. To evaluate the inventories, we estimated bias, RMSE, and precision, expressed as standard error. The laser-scanning-based inventory provided estimates with an accuracy considerably higher than the field inventory. The RMSE was 17 m3/ha (7.24%), 0.9 m (5.63%), and 16 mm (5.99%) for VOL, HL, and DL respectively. The tree species classification was generally successful and improved the three species-specific VOL estimates by 9% to 74%, compared to field estimates. In conclusion, the demonstrated laser-scanning-based inventory shows potential to replace some future forest inventories, thanks to the increased accuracy demonstrated empirically in the Swedish forest study area

    Can models for forest attributes based on airborne laser scanning be generalized for different silvicultural management systems?

    Get PDF
    In Finland, interest in continuous cover forestry (CCF) has increased rapidly in recent years. During those years CCF has been examined from various viewpoints but not from the perspective of forest inventories. This holds especially true for applications based on remote sensing. Conversely, airborne laser scanning (ALS) data have been widely used to predict forest characteristics such as size distribution and vertical forest structure, which are closely related to the forest information needs of CCF. In this study we used the area-based approach to predict a set of stand attributes from ALS data (5 pulses per m2) in a CCF forest management experiment in Katajama & BULL;ki, eastern Finland. In addition to the CCF stands, the experiment included shelterwood stands and untreated stands. The predicted attributes included volume, biomass, basal area, number of stems, mean diameter, Lorey's height, dominant height, standing dead wood volume, parameters of the theoretical stem diameter distribution model, understory height and number of understory stems. Our main aim was to test whether the same model could be used across different management systems. The accuracy of the attributes predicted for the CCF stands was compared with the predictions for the other management systems in the same experiment. We also compared and discussed our results in relation to the even-aged stand attribute predictions that were conducted by using separate operational forest data collected from sites surrounding Katajama & BULL;ki. The results showed that forest data from the different management systems could be combined into a single model of a stand attribute, i.e., ALS metrics were found to be suitable for comparing different management systems in regard to differences in forest structure. The accuracy of the predicted attributes in the CCF plots was comparable to that of the other management alternatives in the experiment. The accuracy was also comparable to that of even-aged forests. The results of this study were promising; the stand attributes of CCF-managed forests could be predicted analogously to those of other management systems. This indicates that for the purposes of forest inventories there may not be a need to stratify forest lands by management system. It should be noted, however, that the study area was relatively small, that the forest stands were harvested in the 1980 s, and that the attributes may not have been completely exhaustive for CCF

    Bayesian Approach for Optimizing Forest Inventory Survey Sampling with Remote Sensing Data

    Get PDF
    In large-area forest inventories, a trade-off between the amount of data to be sampled and the corresponding collection costs is necessary. It is not always possible to have a very large data sample when dealing with sampling-based inventories. It is therefore important to optimize the sampling design with the limited resources. Whereas this sort of inventories are subject to these constraints, the availability of remote sensing (RS) data correlated with the forest inventory variables is usually much higher. For this reason, the RS and sampled field measurement data are often used in combination for improving the forest inventory estimation. In this study, we propose a model-based data sampling method founded on Bayesian optimization and machine learning algorithms which utilizes RS data to guide forest inventory sample selection. We evaluate our method in empirical experiments using real-world volume of growing stock data from the Aland region in Finland. The proposed method is compared against two baseline methods: simple random sampling and the local pivotal method. When a suitable model link is selected, the empirical experiments show on best case on average up to 22% and 79% improvement in population mean and variance estimation respectively over baselines. However, the results also illustrate the importance of model selection which has a clear effect on the results. The novelty of the study is in the application of Bayesian optimization in national forest inventory survey sampling
    • …
    corecore