22,937 research outputs found

    Transformer-based Joint Source Channel Coding for Textual Semantic Communication

    Full text link
    The Space-Air-Ground-Sea integrated network calls for more robust and secure transmission techniques against jamming. In this paper, we propose a textual semantic transmission framework for robust transmission, which utilizes the advanced natural language processing techniques to model and encode sentences. Specifically, the textual sentences are firstly split into tokens using wordpiece algorithm, and are embedded to token vectors for semantic extraction by Transformer-based encoder. The encoded data are quantized to a fixed length binary sequence for transmission, where binary erasure, symmetric, and deletion channels are considered for transmission. The received binary sequences are further decoded by the transformer decoders into tokens used for sentence reconstruction. Our proposed approach leverages the power of neural networks and attention mechanism to provide reliable and efficient communication of textual data in challenging wireless environments, and simulation results on semantic similarity and bilingual evaluation understudy prove the superiority of the proposed model in semantic transmission.Comment: 6 pages, 5 figures. Accepted by IEEE/CIC ICCC 202

    Revisiting Recurrent Networks for Paraphrastic Sentence Embeddings

    Full text link
    We consider the problem of learning general-purpose, paraphrastic sentence embeddings, revisiting the setting of Wieting et al. (2016b). While they found LSTM recurrent networks to underperform word averaging, we present several developments that together produce the opposite conclusion. These include training on sentence pairs rather than phrase pairs, averaging states to represent sequences, and regularizing aggressively. These improve LSTMs in both transfer learning and supervised settings. We also introduce a new recurrent architecture, the Gated Recurrent Averaging Network, that is inspired by averaging and LSTMs while outperforming them both. We analyze our learned models, finding evidence of preferences for particular parts of speech and dependency relations.Comment: Published as a long paper at ACL 201

    Learning semantic sentence representations from visually grounded language without lexical knowledge

    Get PDF
    Current approaches to learning semantic representations of sentences often use prior word-level knowledge. The current study aims to leverage visual information in order to capture sentence level semantics without the need for word embeddings. We use a multimodal sentence encoder trained on a corpus of images with matching text captions to produce visually grounded sentence embeddings. Deep Neural Networks are trained to map the two modalities to a common embedding space such that for an image the corresponding caption can be retrieved and vice versa. We show that our model achieves results comparable to the current state-of-the-art on two popular image-caption retrieval benchmark data sets: MSCOCO and Flickr8k. We evaluate the semantic content of the resulting sentence embeddings using the data from the Semantic Textual Similarity benchmark task and show that the multimodal embeddings correlate well with human semantic similarity judgements. The system achieves state-of-the-art results on several of these benchmarks, which shows that a system trained solely on multimodal data, without assuming any word representations, is able to capture sentence level semantics. Importantly, this result shows that we do not need prior knowledge of lexical level semantics in order to model sentence level semantics. These findings demonstrate the importance of visual information in semantics

    Matching Natural Language Sentences with Hierarchical Sentence Factorization

    Full text link
    Semantic matching of natural language sentences or identifying the relationship between two sentences is a core research problem underlying many natural language tasks. Depending on whether training data is available, prior research has proposed both unsupervised distance-based schemes and supervised deep learning schemes for sentence matching. However, previous approaches either omit or fail to fully utilize the ordered, hierarchical, and flexible structures of language objects, as well as the interactions between them. In this paper, we propose Hierarchical Sentence Factorization---a technique to factorize a sentence into a hierarchical representation, with the components at each different scale reordered into a "predicate-argument" form. The proposed sentence factorization technique leads to the invention of: 1) a new unsupervised distance metric which calculates the semantic distance between a pair of text snippets by solving a penalized optimal transport problem while preserving the logical relationship of words in the reordered sentences, and 2) new multi-scale deep learning models for supervised semantic training, based on factorized sentence hierarchies. We apply our techniques to text-pair similarity estimation and text-pair relationship classification tasks, based on multiple datasets such as STSbenchmark, the Microsoft Research paraphrase identification (MSRP) dataset, the SICK dataset, etc. Extensive experiments show that the proposed hierarchical sentence factorization can be used to significantly improve the performance of existing unsupervised distance-based metrics as well as multiple supervised deep learning models based on the convolutional neural network (CNN) and long short-term memory (LSTM).Comment: Accepted by WWW 2018, 10 page
    • …
    corecore