8,999 research outputs found

    Policy-based QoS management framework for software-defined networks

    Get PDF
    With the emerging trends of virtualization of cloud computing and big data applications, network management has become a challenging problem for optimizing the network state while satisfying the applications’ Quality of Service (QoS) requirements. This paper proposes a policy-based management framework over Software-Defined Networks (SDN) for QoS provisioning. The proposed approach monitors the QoS parameters of the active flows and dynamically enforces new decisions on the underlying SDN switches to adapt the network state to the current demanded high-level policies. Moreover, the proposed solution makes use of Neural Networks to identify the violating flows causing the network congestion. Upon detection of a policy violation two route management techniques are implemented, such as: rerouting and rate limiting. The proposed framework was implemented and evaluated within an experimental test bed setup. The results indicate that the proposed PBNM-based SDN framework enables QoS provisioning and outperforms the default SDN in terms of throughput, packet loss rate and latency

    Policy-based QoS management framework for software-defined networks

    Get PDF
    With the emerging trends of virtualization of cloud computing and big data applications, network management has become a challenging problem for optimizing the network state while satisfying the applications’ Quality of Service (QoS) requirements. This paper proposes a policy-based management framework over Software-Defined Networks (SDN) for QoS provisioning. The proposed approach monitors the QoS parameters of the active flows and dynamically enforces new decisions on the underlying SDN switches to adapt the network state to the current demanded high-level policies. Moreover, the proposed solution makes use of Neural Networks to identify the violating flows causing the network congestion. Upon detection of a policy violation two route management techniques are implemented, such as: rerouting and rate limiting. The proposed framework was implemented and evaluated within an experimental test bed setup. The results indicate that the proposed PBNM-based SDN framework enables QoS provisioning and outperforms the default SDN in terms of throughput, packet loss rate and latency

    A new QoS routing algorithm based on self-organizing maps for wireless sensor networks

    Get PDF
    For the past ten years, many authors have focused their investigations in wireless sensor networks. Different researching issues have been extensively developed: power consumption, MAC protocols, self-organizing network algorithms, data-aggregation schemes, routing protocols, QoS management, etc. Due to the constraints on data processing and power consumption, the use of artificial intelligence has been historically discarded. However, in some special scenarios the features of neural networks are appropriate to develop complex tasks such as path discovery. In this paper, we explore and compare the performance of two very well known routing paradigms, directed diffusion and Energy- Aware Routing, with our routing algorithm, named SIR, which has the novelty of being based on the introduction of neural networks in every sensor node. Extensive simulations over our wireless sensor network simulator, OLIMPO, have been carried out to study the efficiency of the introduction of neural networks. A comparison of the results obtained with every routing protocol is analyzed. This paper attempts to encourage the use of artificial intelligence techniques in wireless sensor nodes

    Using artificial intelligence in routing schemes for wireless networks

    Get PDF
    For the latest 10 years, many authors have focused their investigations in wireless sensor networks. Different researching issues have been extensively developed: power consumption, MAC protocols, self-organizing network algorithms, data-aggregation schemes, routing protocols, QoS management, etc. Due to the constraints on data processing and power consumption, the use of artificial intelligence has been historically discarded. However, in some special scenarios the features of neural networks are appropriate to develop complex tasks such as path discovery. In this paper, we explore the performance of two very well-known routing paradigms, directed diffusion and Energy-Aware Routing, and our routing algorithm, named SIR, which has the novelty of being based on the introduction of neural networks in every sensor node. Extensive simulations over our wireless sensor network simulator, OLIMPO, have been carried out to study the efficiency of the introduction of neural networks. A comparison of the results obtained with every routing protocol is analyzed. This paper attempts to encourage the use of artificial intelligence techniques in wireless sensor nodes

    Giving Neurons to Sensors: An Approach to QoS Management Through Artificial Intelligence in Wireless Networks

    Get PDF
    For the latest ten years, many authors have focused their investigations in wireless sensor networks. Different researching issues have been extensively developed: power consumption, MAC protocols, selforganizing network algorithms, data-aggregation schemes, routing protocols, QoS management, etc. Due to the constraints on data processing and power consumption, the use of artificial intelligence has been historically discarded. However, in some special scenarios the features of neural networks are appropriate to develop complex tasks such as path discovery. In this paper, we explore the performance of two very well known routing paradigms, directed diffusion and Energy-Aware Routing, and our routing algorithm, named SIR, which has the novelty of being based on the introduction of neural networks in every sensor node. Extensive simulations over our wireless sensor network simulator, OLIMPO, have been carried out to study the efficiency of the introduction of neural networks. A comparison of the results obtained with every routing protocol is analyzed. This paper attempts to encourage the use of artificial intelligence techniques in wireless sensor nodes

    ATM QoS prediction using neural-networks

    Get PDF
    Future broadband integrated services digital networks (B-ISDN) will be based on asynchronous transfer mode (ATM) technology. ATM traffic management and congestion control is needed to guarantee the quality of service (QoS) parameters. Artificial neural networks (ANN) have several properties that are valuable when implementing ATM traffic control. A neural network based QoS estimation is presented to enhance the performance of ATM management so that service providers offer better services to their clients. A divide and conquer approach is proposed, which can be used for efficient classification. This architecture can be trained faster than conventional neural network architecture and it can classify the data more efficiently. Multilayer perceptron (MLP) and radial basis function networks (RBFN) are also trained for QoS estimation and their performances are compared. Results indicate that the proposed architecture outperforms MLP and RBF network

    ATM QoS prediction using neural-networks

    Get PDF
    Future broadband integrated services digital networks (B-ISDN) will be based on asynchronous transfer mode (ATM) technology. ATM traffic management and congestion control is needed to guarantee the quality of service (QoS) parameters. Artificial neural networks (ANN) have several properties that are valuable when implementing ATM traffic control. A neural network based QoS estimation is presented to enhance the performance of ATM management so that service providers offer better services to their clients. A divide and conquer approach is proposed, which can be used for efficient classification. This architecture can be trained faster than conventional neural network architecture and it can classify the data more efficiently. Multilayer perceptron (MLP) and radial basis function networks (RBFN) are also trained for QoS estimation and their performances are compared. Results indicate that the proposed architecture outperforms MLP and RBF network

    An Intelligent QoS Identification for Untrustworthy Web Services Via Two-phase Neural Networks

    Full text link
    QoS identification for untrustworthy Web services is critical in QoS management in the service computing since the performance of untrustworthy Web services may result in QoS downgrade. The key issue is to intelligently learn the characteristics of trustworthy Web services from different QoS levels, then to identify the untrustworthy ones according to the characteristics of QoS metrics. As one of the intelligent identification approaches, deep neural network has emerged as a powerful technique in recent years. In this paper, we propose a novel two-phase neural network model to identify the untrustworthy Web services. In the first phase, Web services are collected from the published QoS dataset. Then, we design a feedforward neural network model to build the classifier for Web services with different QoS levels. In the second phase, we employ a probabilistic neural network (PNN) model to identify the untrustworthy Web services from each classification. The experimental results show the proposed approach has 90.5% identification ratio far higher than other competing approaches.Comment: 8 pages, 5 figure
    corecore