12,333 research outputs found

    Computational approaches to predict protein functional families and functional sites.

    Get PDF
    Understanding the mechanisms of protein function is indispensable for many biological applications, such as protein engineering and drug design. However, experimental annotations are sparse, and therefore, theoretical strategies are needed to fill the gap. Here, we present the latest developments in building functional subclassifications of protein superfamilies and using evolutionary conservation to detect functional determinants, for example, catalytic-, binding- and specificity-determining residues important for delineating the functional families. We also briefly review other features exploited for functional site detection and new machine learning strategies for combining multiple features

    Ancient Pbx-Hox signatures define hundreds of vertebrate developmental enhancers

    Get PDF
    Background: Gene regulation through cis-regulatory elements plays a crucial role in development and disease. A major aim of the post-genomic era is to be able to read the function of cis-regulatory elements through scrutiny of their DNA sequence. Whilst comparative genomics approaches have identified thousands of putative regulatory elements, our knowledge of their mechanism of action is poor and very little progress has been made in systematically de-coding them. Results: Here, we identify ancient functional signatures within vertebrate conserved non-coding elements (CNEs) through a combination of phylogenetic footprinting and functional assay, using genomic sequence from the sea lamprey as a reference. We uncover a striking enrichment within vertebrate CNEs for conserved binding-site motifs of the Pbx-Hox hetero-dimer. We further show that these predict reporter gene expression in a segment specific manner in the hindbrain and pharyngeal arches during zebrafish development. Conclusions: These findings evoke an evolutionary scenario in which many CNEs evolved early in the vertebrate lineage to co-ordinate Hox-dependent gene-regulatory interactions that pattern the vertebrate head. In a broader context, our evolutionary analyses reveal that CNEs are composed of tightly linked transcription-factor binding-sites (TFBSs), which can be systematically identified through phylogenetic footprinting approaches. By placing a large number of ancient vertebrate CNEs into a developmental context, our findings promise to have a significant impact on efforts toward de-coding gene-regulatory elements that underlie vertebrate development, and will facilitate building general models of regulatory element evolution

    Genomic characterization of Gli-activator targets in sonic hedgehog-mediated neural patterning

    Get PDF
    Sonic hedgehog (Shh) acts as a morphogen to mediate the specification of distinct cell identities in the ventral neural tube through a Gli-mediated (Gli1-3) transcriptional network. Identifying Gli targets in a systematic fashion is central to the understanding of the action of Shh. We examined this issue in differentiating neural progenitors in mouse. An epitope-tagged Gli-activator protein was used to directly isolate cis-regulatory sequences by chromatin immunoprecipitation (ChIP). ChIP products were then used to screen custom genomic tiling arrays of putative Hedgehog (Hh) targets predicted from transcriptional profiling studies, surveying 50-150 kb of non-transcribed sequence for each candidate. In addition to identifying expected Gli-target sites, the data predicted a number of unreported direct targets of Shh action. Transgenic analysis of binding regions in Nkx2.2, Nkx2.1 (Titf1) and Rab34 established these as direct Hh targets. These data also facilitated the generation of an algorithm that improved in silico predictions of Hh target genes. Together, these approaches provide significant new insights into both tissue-specific and general transcriptional targets in a crucial Shh-mediated patterning process

    Identification of long non-coding RNAs involved in neuronal development and intellectual disability

    Get PDF
    Recently, exome sequencing led to the identification of causal mutations in 16–31% of patients with intellectual disability (ID), leaving the underlying cause for many patients unidentified. In this context, the noncoding part of the human genome remains largely unexplored. For many long non-coding RNAs (lncRNAs) a crucial role in neurodevelopment and hence the human brain is anticipated. Here we aimed at identifying lncRNAs associated with neuronal development and ID. Therefore, we applied an integrated genomics approach, harnessing several public epigenetic datasets. We found that the presence of neuron-specific H3K4me3 confers the highest specificity for genes involved in neurodevelopment and ID. Based on the presence of this feature and GWAS hits for CNS disorders, we identified 53 candidate lncRNA genes. Extensive expression profiling on human brain samples and other tissues, followed by Gene Set Enrichment Analysis indicates that at least 24 of these lncRNAs are indeed implicated in processes such as synaptic transmission, nervous system development and neurogenesis. The bidirectional or antisense overlapping orientation relative to multiple coding genes involved in neuronal processes supports these results. In conclusion, we identified several lncRNA genes putatively involved in neurodevelopment and CNS disorders, providing a resource for functional studies

    Module Finder : a computational model for the identification of Cis regulatory modules

    Get PDF
    Thesis (S.M.)--Harvard-MIT Division of Health Sciences and Technology, 2005.Includes bibliographical references (leaves 55-57).Regulation of gene expression occurs largely through the binding of sequence- specific transcription factors (TFs) to genomic DNA binding sites (BSs). This thesis presents a rigorous scoring scheme, implemented as a C program termed "ModuleFinder", that evaluates the likelihood that a given genomic region is a cis regulatory module (CRM) for an input set of TFs according to its degree of: (1) homotypic site clustering; (2) heterotypic site clustering; and (3) evolutionary conservation across multiple genomes. Importantly, ModuleFinder obtains all parameters needed to appropriately weight the relative contributions of these sequence features directly from the input sequences and TFBS motifs, and does not need to first be trained. Using two previously described collections of experimentally verified CRMs in mammals as validation datasets, we show that ModuleFinder is able to identify CRMs with great sensitivity and specificity. We also evaluated ModuleFinder on a set of DNA binding site data for the human TFs Hepatocyte Nuclear Factor HNF1 [alpha], HNF4 [alpha] and HNF6 and compared its performance with logistic regression and neural network models.by Fangxue He.S.M

    Computational Approaches to Drug Profiling and Drug-Protein Interactions

    Get PDF
    Despite substantial increases in R&D spending within the pharmaceutical industry, denovo drug design has become a time-consuming endeavour. High attrition rates led to a long period of stagnation in drug approvals. Due to the extreme costs associated with introducing a drug to the market, locating and understanding the reasons for clinical failure is key to future productivity. As part of this PhD, three main contributions were made in this respect. First, the web platform, LigNFam enables users to interactively explore similarity relationships between ‘drug like’ molecules and the proteins they bind. Secondly, two deep-learning-based binding site comparison tools were developed, competing with the state-of-the-art over benchmark datasets. The models have the ability to predict offtarget interactions and potential candidates for target-based drug repurposing. Finally, the open-source ScaffoldGraph software was presented for the analysis of hierarchical scaffold relationships and has already been used in multiple projects, including integration into a virtual screening pipeline to increase the tractability of ultra-large screening experiments. Together, and with existing tools, the contributions made will aid in the understanding of drug-protein relationships, particularly in the fields of off-target prediction and drug repurposing, helping to design better drugs faster

    Predicting Bevirimat resistance of HIV-1 from genotype

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Maturation inhibitors are a new class of antiretroviral drugs. Bevirimat (BVM) was the first substance in this class of inhibitors entering clinical trials. While the inhibitory function of BVM is well established, the molecular mechanisms of action and resistance are not well understood. It is known that mutations in the regions CS p24/p2 and p2 can cause phenotypic resistance to BVM. We have investigated a set of p24/p2 sequences of HIV-1 of known phenotypic resistance to BVM to test whether BVM resistance can be predicted from sequence, and to identify possible molecular mechanisms of BVM resistance in HIV-1.</p> <p>Results</p> <p>We used artificial neural networks and random forests with different descriptors for the prediction of BVM resistance. Random forests with hydrophobicity as descriptor performed best and classified the sequences with an area under the Receiver Operating Characteristics (ROC) curve of 0.93 ± 0.001. For the collected data we find that p2 sequence positions 369 to 376 have the highest impact on resistance, with positions 370 and 372 being particularly important. These findings are in partial agreement with other recent studies. Apart from the complex machine learning models we derived a number of simple rules that predict BVM resistance from sequence with surprising accuracy. According to computational predictions based on the data set used, cleavage sites are usually not shifted by resistance mutations. However, we found that resistance mutations could shorten and weaken the <it>α</it>-helix in p2, which hints at a possible resistance mechanism.</p> <p>Conclusions</p> <p>We found that BVM resistance of HIV-1 can be predicted well from the sequence of the p2 peptide, which may prove useful for personalized therapy if maturation inhibitors reach clinical practice. Results of secondary structure analysis are compatible with a possible route to BVM resistance in which mutations weaken a six-helix bundle discovered in recent experiments, and thus ease Gag cleavage by the retroviral protease.</p
    corecore