5,656 research outputs found

    Meta-heuristic algorithms in car engine design: a literature survey

    Get PDF
    Meta-heuristic algorithms are often inspired by natural phenomena, including the evolution of species in Darwinian natural selection theory, ant behaviors in biology, flock behaviors of some birds, and annealing in metallurgy. Due to their great potential in solving difficult optimization problems, meta-heuristic algorithms have found their way into automobile engine design. There are different optimization problems arising in different areas of car engine management including calibration, control system, fault diagnosis, and modeling. In this paper we review the state-of-the-art applications of different meta-heuristic algorithms in engine management systems. The review covers a wide range of research, including the application of meta-heuristic algorithms in engine calibration, optimizing engine control systems, engine fault diagnosis, and optimizing different parts of engines and modeling. The meta-heuristic algorithms reviewed in this paper include evolutionary algorithms, evolution strategy, evolutionary programming, genetic programming, differential evolution, estimation of distribution algorithm, ant colony optimization, particle swarm optimization, memetic algorithms, and artificial immune system

    The NASA SBIR product catalog

    Get PDF
    The purpose of this catalog is to assist small business firms in making the community aware of products emerging from their efforts in the Small Business Innovation Research (SBIR) program. It contains descriptions of some products that have advanced into Phase 3 and others that are identified as prospective products. Both lists of products in this catalog are based on information supplied by NASA SBIR contractors in responding to an invitation to be represented in this document. Generally, all products suggested by the small firms were included in order to meet the goals of information exchange for SBIR results. Of the 444 SBIR contractors NASA queried, 137 provided information on 219 products. The catalog presents the product information in the technology areas listed in the table of contents. Within each area, the products are listed in alphabetical order by product name and are given identifying numbers. Also included is an alphabetical listing of the companies that have products described. This listing cross-references the product list and provides information on the business activity of each firm. In addition, there are three indexes: one a list of firms by states, one that lists the products according to NASA Centers that managed the SBIR projects, and one that lists the products by the relevant Technical Topics utilized in NASA's annual program solicitation under which each SBIR project was selected

    Space shuttle main engine fault detection using neural networks

    Get PDF
    A method for on-line Space Shuttle Main Engine (SSME) anomaly detection and fault typing using a feedback neural network is described. The method involves the computation of features representing time-variance of SSME sensor parameters, using historical test case data. The network is trained, using backpropagation, to recognize a set of fault cases. The network is then able to diagnose new fault cases correctly. An essential element of the training technique is the inclusion of randomly generated data along with the real data, in order to span the entire input space of potential non-nominal data

    Combined fault detection and classification of internal combustion engine using neural network

    Get PDF
    Different faults in internal combustion engines leads to excessive fuel consumption, pollution, acoustic emission and wear of engine components. Detection of fault is also difficult for maintenance technicians due to broad range of faults and combination of the faults. In this research the faults due to malfunction of manifold absolute pressure, knock sensor and misfire are detected and classified by analyzing vibration signals. The vibration signals acquired from engine block were preprocessed by wavelet analysis, and signal energy is considered as a distinguishing property to classify these faults by a Multi-Layer Perceptron Neural Network (MLPNN). The designed MLPNN can classify these faults with almost 100 % efficiency

    An application of early fault detection for the crankshaft and piston of an internal combustion engine

    Get PDF
    Internal combustion engines are made of many moving components that are subjected to high inertia and combustion loads. Crankshaft bearing and piston-cylinder walls work under hydrodynamic lubrication conditions. Any failure at those bearing may cause severe damage on the engine. Acceleration measurement on the cylinder block and cylinder was effectively used for early detection of failure in hydrodynamic lubrication. Inspection of the crankshaft and piston components after the test clearly shows that metal-to-metal contact occurred during the test and real-time acceleration signal analysis can help to early detection of the problem

    Artificial neural networks and physical modeling for determination of baseline consumption of CHP plants

    Get PDF
    An effective modeling technique is proposed for determining baseline energy consumption in the industry. A CHP plant is considered in the study that was subjected to a retrofit, which consisted of the implementation of some energy-saving measures. This study aims to recreate the post-retrofit energy consumption and production of the system in case it would be operating in its past configuration (before retrofit) i.e., the current consumption and production in the event that no energy-saving measures had been implemented. Two different modeling methodologies are applied to the CHP plant: thermodynamic modeling and artificial neural networks (ANN). Satisfactory results are obtained with both modeling techniques. Acceptable accuracy levels of prediction are detected, confirming good capability of the models for predicting plant behavior and their suitability for baseline energy consumption determining purposes. High level of robustness is observed for ANN against uncertainty affecting measured values of variables used as input in the models. The study demonstrates ANN great potential for assessing baseline consumption in energyintensive industry. Application of ANN technique would also help to overcome the limited availability of on-shelf thermodynamic software for modeling all specific typologies of existing industrial processes

    Review of air fuel ratio prediction and control methods

    Get PDF
    Air pollution is one of main challenging issues nowadays that researchers have been trying to address.The emissions of vehicle engine exhausts are responsible for 50 percent of air pollution. Different types of emissions emit from vehicles including carbon monoxide, hydrocarbons, NOX, and so on. There is a tendency to develop strategies of engine control which work in a fast way. Accomplishing this task will result in a decrease in emissions which coupled with the fuel composition can bring about the best performance of the vehicle engine.Controlling the Air-Fuel Ratio (AFR) is necessary, because the AFR has an enormous impact on the effectiveness of the fuel and reduction of emissions.This paper is aimed at reviewing the recent studies on the prediction and control of the AFR, as a bulk of research works with different approaches, was conducted in this area.These approaches include both classical and modern methods, namely Artificial Neural Networks (ANN), Fuzzy Logic, and Neuro-Fuzzy Systems are described in this paper.The strength and the weakness of individual approaches will be discussed at length

    Fuzzy logic methodology to study the behavior of energy transformation processes based on statistics t2 and q

    Get PDF
    In the processes of energy transformation, to carry out an adequate follow-up of the process parameters represent an opportunity to propose strategies to improve the processes' performance. For this reason, it is essential to analyze the behavior of process variables under the quantitative and qualitative optics supported by the experts. Thus, this work proposes a methodology of fuzzy Mandani type logic that allows the analysis of energy transformation processes (such as internal combustion engines) based on T2 and Q statistics, as a way to identify whether the operation limits are kept within the normal or exceed the limits, achieving to identify the anomaly in the process. In the initial stage, MATLAB implements two diffuse systems; the first system aims to determine the impact variables have on the generation of an anomaly, without identifying the type of defect. In the second stage, it's defined as a function of the number guests, the kind of monster that occurs in the observations made from the transition range in the operation of the system analyzed, until the last measurement obtained. In the third stage, the statistics T2, Q, and its limits are determined from the operating variables of the selected system. Finally, the previously calculated statistics are graphically processed in the diffuse systems. The results obtained in this work show that the analysis of processes or phenomena based on qualitative observations, the methodology implemented, is a useful tool for decision making in the industrial sector
    • …
    corecore