19,546 research outputs found

    Neural Networks for Modeling and Control of Particle Accelerators

    Full text link
    We describe some of the challenges of particle accelerator control, highlight recent advances in neural network techniques, discuss some promising avenues for incorporating neural networks into particle accelerator control systems, and describe a neural network-based control system that is being developed for resonance control of an RF electron gun at the Fermilab Accelerator Science and Technology (FAST) facility, including initial experimental results from a benchmark controller.Comment: 21 p

    Applications of recurrent neural networks in batch reactors. Part II: Nonlinear inverse and predictive control of the heat transfer fluid temperature

    Get PDF
    Although nonlinear inverse and predictive control techniques based on artificial neural networks have been extensively applied to nonlinear systems, their use in real time applications is generally limited. In this paper neural inverse and predictive control systems have been applied to the real-time control of the heat transfer fluid temperature in a pilot chemical reactor. The training of the inverse control system is carried out using both generalised and specialised learning. This allows the preparation of weights of the controller acting in real-time and appropriate performances of inverse neural controller can be achieved. The predictive control system makes use of a neural network to calculate the control action. Thus, the problems related to the high computational effort involved in nonlinear model-predictive control systems are reduced. The performance of the neural controllers is compared against the self-tuning PID controller currently installed in the plant. The results show that neural-based controllers improve the performance of the real plant.Publicad

    Neural-Network Vector Controller for Permanent-Magnet Synchronous Motor Drives: Simulated and Hardware-Validated Results

    Get PDF
    This paper focuses on current control in a permanentmagnet synchronous motor (PMSM). The paper has two main objectives: The first objective is to develop a neural-network (NN) vector controller to overcome the decoupling inaccuracy problem associated with conventional PI-based vector-control methods. The NN is developed using the full dynamic equation of a PMSM, and trained to implement optimal control based on approximate dynamic programming. The second objective is to evaluate the robust and adaptive performance of the NN controller against that of the conventional standard vector controller under motor parameter variation and dynamic control conditions by (a) simulating the behavior of a PMSM typically used in realistic electric vehicle applications and (b) building an experimental system for hardware validation as well as combined hardware and simulation evaluation. The results demonstrate that the NN controller outperforms conventional vector controllers in both simulation and hardware implementation

    A Learning-based Stochastic MPC Design for Cooperative Adaptive Cruise Control to Handle Interfering Vehicles

    Full text link
    Vehicle to Vehicle (V2V) communication has a great potential to improve reaction accuracy of different driver assistance systems in critical driving situations. Cooperative Adaptive Cruise Control (CACC), which is an automated application, provides drivers with extra benefits such as traffic throughput maximization and collision avoidance. CACC systems must be designed in a way that are sufficiently robust against all special maneuvers such as cutting-into the CACC platoons by interfering vehicles or hard braking by leading cars. To address this problem, a Neural- Network (NN)-based cut-in detection and trajectory prediction scheme is proposed in the first part of this paper. Next, a probabilistic framework is developed in which the cut-in probability is calculated based on the output of the mentioned cut-in prediction block. Finally, a specific Stochastic Model Predictive Controller (SMPC) is designed which incorporates this cut-in probability to enhance its reaction against the detected dangerous cut-in maneuver. The overall system is implemented and its performance is evaluated using realistic driving scenarios from Safety Pilot Model Deployment (SPMD).Comment: 10 pages, Submitted as a journal paper at T-I

    Feedback control by online learning an inverse model

    Get PDF
    A model, predictor, or error estimator is often used by a feedback controller to control a plant. Creating such a model is difficult when the plant exhibits nonlinear behavior. In this paper, a novel online learning control framework is proposed that does not require explicit knowledge about the plant. This framework uses two learning modules, one for creating an inverse model, and the other for actually controlling the plant. Except for their inputs, they are identical. The inverse model learns by the exploration performed by the not yet fully trained controller, while the actual controller is based on the currently learned model. The proposed framework allows fast online learning of an accurate controller. The controller can be applied on a broad range of tasks with different dynamic characteristics. We validate this claim by applying our control framework on several control tasks: 1) the heating tank problem (slow nonlinear dynamics); 2) flight pitch control (slow linear dynamics); and 3) the balancing problem of a double inverted pendulum (fast linear and nonlinear dynamics). The results of these experiments show that fast learning and accurate control can be achieved. Furthermore, a comparison is made with some classical control approaches, and observations concerning convergence and stability are made

    Neural Modeling and Control of Diesel Engine with Pollution Constraints

    Full text link
    The paper describes a neural approach for modelling and control of a turbocharged Diesel engine. A neural model, whose structure is mainly based on some physical equations describing the engine behaviour, is built for the rotation speed and the exhaust gas opacity. The model is composed of three interconnected neural submodels, each of them constituting a nonlinear multi-input single-output error model. The structural identification and the parameter estimation from data gathered on a real engine are described. The neural direct model is then used to determine a neural controller of the engine, in a specialized training scheme minimising a multivariable criterion. Simulations show the effect of the pollution constraint weighting on a trajectory tracking of the engine speed. Neural networks, which are flexible and parsimonious nonlinear black-box models, with universal approximation capabilities, can accurately describe or control complex nonlinear systems, with little a priori theoretical knowledge. The presented work extends optimal neuro-control to the multivariable case and shows the flexibility of neural optimisers. Considering the preliminary results, it appears that neural networks can be used as embedded models for engine control, to satisfy the more and more restricting pollutant emission legislation. Particularly, they are able to model nonlinear dynamics and outperform during transients the control schemes based on static mappings.Comment: 15 page
    • …
    corecore