8,302 research outputs found

    Home-based physical therapy with an interactive computer vision system

    Full text link
    In this paper, we present ExerciseCheck. ExerciseCheck is an interactive computer vision system that is sufficiently modular to work with different sources of human pose estimates, i.e., estimates from deep or traditional models that interpret RGB or RGB-D camera input. In a pilot study, we first compare the pose estimates produced by four deep models based on RGB input with those of the MS Kinect based on RGB-D data. The results indicate a performance gap that required us to choose the MS Kinect when we tested ExerciseCheck with Parkinson’s disease patients in their homes. ExerciseCheck is capable of customizing exercises, capturing exercise information, evaluating patient performance, providing therapeutic feedback to the patient and the therapist, checking the progress of the user over the course of the physical therapy, and supporting the patient throughout this period. We conclude that ExerciseCheck is a user-friendly computer vision application that can assist patients by providing motivation and guidance to ensure correct execution of the required exercises. Our results also suggest that while there has been considerable progress in the field of pose estimation using deep learning, current deep learning models are not fully ready to replace RGB-D sensors, especially when the exercises involved are complex, and the patient population being accounted for has to be carefully tracked for its “active range of motion.”Published versio

    Head mounted display effect on vestibular rehabilitation exercises performance

    Get PDF
    OBJECTIVES: Vestibular rehabilitation clinical guidelines document the additional benefit offered by the Mixed Reality environments in the reduction of symptoms and the improvement of balance in peripheral vestibular hypofunction. The HOLOBalance platform offers vestibular rehabilitation exercises, in an Augmented Reality (AR) environment, projecting them using a low- cost Head Mounted Display. The effect of the AR equipment on the performance in three of the commonest vestibular rehabilitation exercises is investigated in this pilot study. METHODS: Twenty-five healthy adults (12/25 women) participated, executing the predetermined exercises with or without the use of the AR equipment. RESULTS: Statistically significant difference was obtained only in the frequency of head movements in the yaw plane during the execution of a vestibular adaptation exercise by healthy adults (0.97 Hz; 95% CI=(0.56, 1.39), p<0.001). In terms of difficulty in exercise execution, the use of the equipment led to statistically significant differences at the vestibular-oculomotor adaptation exercise in the pitch plane (OR=3.64, 95% CI (-0.22, 7.50), p=0.049), and in the standing exercise (OR=28.28. 95% CI (23.6, 32.96), p=0.0001). CONCLUSION: ΀he use of AR equipment in vestibular rehabilitation protocols should be adapted to the clinicians' needs

    Rehabilitation Engineering

    Get PDF
    Population ageing has major consequences and implications in all areas of our daily life as well as other important aspects, such as economic growth, savings, investment and consumption, labour markets, pensions, property and care from one generation to another. Additionally, health and related care, family composition and life-style, housing and migration are also affected. Given the rapid increase in the aging of the population and the further increase that is expected in the coming years, an important problem that has to be faced is the corresponding increase in chronic illness, disabilities, and loss of functional independence endemic to the elderly (WHO 2008). For this reason, novel methods of rehabilitation and care management are urgently needed. This book covers many rehabilitation support systems and robots developed for upper limbs, lower limbs as well as visually impaired condition. Other than upper limbs, the lower limb research works are also discussed like motorized foot rest for electric powered wheelchair and standing assistance device

    Effectiveness of bilateral task oriented training versus unilateral task oriented training to improve the motor functions of upper limb in stroke patients

    Get PDF
    BACKGROUND AND PURPOSE: Upper extremity paresis in post stroke is an important contributor to disability and task oriented rehabilitation aims at compensating loss of function in the affected upper extremity. The purpose of this study was to investigate the effectiveness of bilateral task oriented training versus unilateral task oriented training to improve the motor functions of upper limb in stroke patients. AIM OF THE STUDY: This study aimed to demonstrate the effectiveness of bilateral task oriented training versus unilateral task oriented training to improve the motor functions of upper limb in stroke patients. OBJECTIVE OF THE STUDY: To improve the motor functions of Upper Limb. METHODS: 20 hemiplegic subjects have divided into two groups, the bilateral task oriented training group (10) and the unilateral task oriented training group (10). Duration of session is 60 minutes and 5 sessions per week over 12 weeks. Fugl – meyer assessment scale for upper extremity (FMA-UE), Chedoke arm and hand activity inventory (CAHAI) have used to quantify the treatment outcome. RESULTS: The inferential statistical results of Independent ‘t’ test for between the group comparison of post treatment ‘t’ value is 1.9 (p value 0.03 ) in fugl - meyer motor assessment for upper extremity and 2.53 (p value 0.01) in chedoke arm and hand activity inventory. CONCLUSION: Bilateral task oriented training improved motor functions of upper limb better than unilateral task oriented training in stroke patients

    cGAN-Based High Dimensional IMU Sensor Data Generation for Therapeutic Activities

    Full text link
    Human activity recognition is a core technology for applications such as rehabilitation, ambient health monitoring, and human-computer interactions. Wearable devices, particularly IMU sensors, can help us collect rich features of human movements that can be leveraged in activity recognition. Developing a robust classifier for activity recognition has always been of interest to researchers. One major problem is that there is usually a deficit of training data for some activities, making it difficult and sometimes impossible to develop a classifier. In this work, a novel GAN network called TheraGAN was developed to generate realistic IMU signals associated with a particular activity. The generated signal is of a 6-channel IMU. i.e., angular velocities and linear accelerations. Also, by introducing simple activities, which are meaningful subparts of a complex full-length activity, the generation process was facilitated for any activity with arbitrary length. To evaluate the generated signals, besides perceptual similarity metrics, they were applied along with real data to improve the accuracy of classifiers. The results show that the maximum increase in the f1-score belongs to the LSTM classifier by a 13.27% rise when generated data were added. This shows the validity of the generated data as well as TheraGAN as a tool to build more robust classifiers in case of imbalanced data problem

    A Series-Elastic Robot for Back-Pain Rehabilitation

    Get PDF
    Robotics research has been broadly expanding into various fields during the past decades. It is widely spread and best known for solving many technical necessities in different fields. With the rise of the industrial revolution, it upgraded many factories to use industrial robots to prevent the human operator from dangerous and hazardous tasks. The rapid development of application fields and their complexity have inspired researchers in the robotics community to find innovative solutions to meet the new desired requirements of the field. Currently, the creation of new needs outside the traditional industrial robots are demanding robots to attend to the new market and to assist humans in meeting their daily social needs (i.e., agriculture, construction, cleaning.). The future integration of robots into other types of production processes, added new requirements that require more safety, flexibility, and intelligence in robots. Areas of robotics has evolved into various fields. This dissertation addresses robotics research in four different areas: rehabilitation robots, biologically inspired robots, optimization techniques, and neural network implementation. Although these four areas may seem different from each other, they share some research topics and applications

    Home-based therapy programmes for upper limb functional recovery following stroke

    Get PDF
    Background: With an increased focus on home-based stroke services and the undertaking of programmes, targeted at upper limb recovery within clinical practice, a systematic review of home-based therapy programmes for individuals with upper limb impairment following stroke was required. Objectives: To determine the effects of home-based therapy programmes for upper limb recovery in patients with upper limb impairment following stroke. Search methods: We searched the Cochrane Stroke Group's Specialised Trials Register (May 2011), the Cochrane Central Register of Controlled Trials (CENTRAL) (The Cochrane Library 2011, Issue 2), MEDLINE (1950 to May 2011), EMBASE (1980 to May 2011), AMED (1985 to May 2011) and six additional databases. We also searched reference lists and trials registers. Selection criteria: Randomised controlled trials (RCTs) in adults after stroke, where the intervention was a home-based therapy programme targeted at the upper limb, compared with placebo, or no intervention or usual care. Primary outcomes were performance in activities of daily living (ADL) and functional movement of the upper limb. Secondary outcomes were performance in extended ADL and motor impairment of the arm. Data collection and analysis: Two review authors independently screened abstracts, extracted data and appraised trials. We undertook assessment of risk of bias in terms of method of randomisation and allocation concealment (selection bias), blinding of outcome assessment (detection bias), whether all the randomised patients were accounted for in the analysis (attrition bias) and the presence of selective outcome reporting. Main results: We included four studies with 166 participants. No studies compared the effects of home-based upper limb therapy programmes with placebo or no intervention. Three studies compared the effects of home-based upper limb therapy programmes with usual care. Primary outcomes: we found no statistically significant result for performance of ADL (mean difference (MD) 2.85; 95% confidence interval (CI) -1.43 to 7.14) or functional movement of the upper limb (MD 2.25; 95% CI -0.24 to 4.73)). Secondary outcomes: no statistically significant results for extended ADL (MD 0.83; 95% CI -0.51 to 2.17)) or upper limb motor impairment (MD 1.46; 95% CI -0.58 to 3.51). One study compared the effects of a home-based upper limb programme with the same upper limb programme based in hospital, measuring upper limb motor impairment only; we found no statistically significant difference between groups (MD 0.60; 95% CI -8.94 to 10.14). Authors' conclusions: There is insufficient good quality evidence to make recommendations about the relative effect of home-based therapy programmes compared with placebo, no intervention or usual care
    • 

    corecore