159,885 research outputs found

    Neuroplasticity of language networks in aphasia: advances, updates, and future challenges

    Get PDF
    Researchers have sought to understand how language is processed in the brain, how brain damage affects language abilities, and what can be expected during the recovery period since the early 19th century. In this review, we first discuss mechanisms of damage and plasticity in the post-stroke brain, both in the acute and the chronic phase of recovery. We then review factors that are associated with recovery. First, we review organism intrinsic variables such as age, lesion volume and location and structural integrity that influence language recovery. Next, we review organism extrinsic factors such as treatment that influence language recovery. Here, we discuss recent advances in our understanding of language recovery and highlight recent work that emphasizes a network perspective of language recovery. Finally, we propose our interpretation of the principles of neuroplasticity, originally proposed by Kleim and Jones (1) in the context of extant literature in aphasia recovery and rehabilitation. Ultimately, we encourage researchers to propose sophisticated intervention studies that bring us closer to the goal of providing precision treatment for patients with aphasia and a better understanding of the neural mechanisms that underlie successful neuroplasticity.P50 DC012283 - NIDCD NIH HHSPublished versio

    Deep Poselets for Human Detection

    Full text link
    We address the problem of detecting people in natural scenes using a part approach based on poselets. We propose a bootstrapping method that allows us to collect millions of weakly labeled examples for each poselet type. We use these examples to train a Convolutional Neural Net to discriminate different poselet types and separate them from the background class. We then use the trained CNN as a way to represent poselet patches with a Pose Discriminative Feature (PDF) vector -- a compact 256-dimensional feature vector that is effective at discriminating pose from appearance. We train the poselet model on top of PDF features and combine them with object-level CNNs for detection and bounding box prediction. The resulting model leads to state-of-the-art performance for human detection on the PASCAL datasets

    A NEURAL NETWORK BASED TRAFFIC-FLOW PREDICTION MODEL

    Get PDF
    Prediction of traffic-flow in Istanbul has been a great concern for planners of the city. Istanbul as being one of the most crowded cities in the Europe has a rural population of more than 10 million. The related transportation agencies ill Istanbul continuously collect data through many ways thanks to improvements in sensor technology and communication systems which allow to more closely monitor the condition of the city transportation system. Since monitoring alone cannot improve the safety or efficiency of the system, those agencies actively inform the drivers continuously through various media including television broadcasts, internet, and electronic display boards on many locations on the roads. Currently, the human expertise is employed to judge traffic-flow on the roads to inform the public. There is no reliance on past data and human experts give opinions only on the present condition without much idea on what will be the likely events in the next hours. Historical events such as school-timings, holidays and other periodic events cannot be utilized for judging the future traffic-flows. This paper makes a preliminary attempt to change scenario by using artificial neural networks (ANNs) to model the past historical data. It aims at the prediction of the traffic volume based on the historical data in each major junction in the city. ANNs have given very encouraging results with the suggested approach explained in the paper

    NeuroFlow: A General Purpose Spiking Neural Network Simulation Platform using Customizable Processors

    Get PDF
    © 2016 Cheung, Schultz and Luk.NeuroFlow is a scalable spiking neural network simulation platform for off-the-shelf high performance computing systems using customizable hardware processors such as Field-Programmable Gate Arrays (FPGAs). Unlike multi-core processors and application-specific integrated circuits, the processor architecture of NeuroFlow can be redesigned and reconfigured to suit a particular simulation to deliver optimized performance, such as the degree of parallelism to employ. The compilation process supports using PyNN, a simulator-independent neural network description language, to configure the processor. NeuroFlow supports a number of commonly used current or conductance based neuronal models such as integrate-and-fire and Izhikevich models, and the spike-timing-dependent plasticity (STDP) rule for learning. A 6-FPGA system can simulate a network of up to ~600,000 neurons and can achieve a real-time performance of 400,000 neurons. Using one FPGA, NeuroFlow delivers a speedup of up to 33.6 times the speed of an 8-core processor, or 2.83 times the speed of GPU-based platforms. With high flexibility and throughput, NeuroFlow provides a viable environment for large-scale neural network simulation
    corecore