12,432 research outputs found

    BCAUS Project description and consideration of separation of data and control

    Get PDF
    The commonly stated truths that data may be segregated from program control in generic expert system shells and that such tools support straightforward knowledge representation were examined. The ideal of separation of data from program control in expert systems is difficult to realize for a variety of reasons. One approach to achieving this goal is to integrate hybrid collections of specialized shells and tools instead of producing custom systems built with a single all purpose expert system tool. Aspects of these issues are examined in the context of a specific diagnostic expert system application, the Backup Control Mode Analysis and Utility System (BCAUS), being developed for the Gamma Ray Observatory (GRO) spacecraft. The project and the knowledge gained in working on the project are described

    Transmission of Information in Active Networks

    Full text link
    Shannon's Capacity Theorem is the main concept behind the Theory of Communication. It says that if the amount of information contained in a signal is smaller than the channel capacity of a physical media of communication, it can be transmitted with arbitrarily small probability of error. This theorem is usually applicable to ideal channels of communication in which the information to be transmitted does not alter the passive characteristics of the channel that basically tries to reproduce the source of information. For an {\it active channel}, a network formed by elements that are dynamical systems (such as neurons, chaotic or periodic oscillators), it is unclear if such theorem is applicable, once an active channel can adapt to the input of a signal, altering its capacity. To shed light into this matter, we show, among other results, how to calculate the information capacity of an active channel of communication. Then, we show that the {\it channel capacity} depends on whether the active channel is self-excitable or not and that, contrary to a current belief, desynchronization can provide an environment in which large amounts of information can be transmitted in a channel that is self-excitable. An interesting case of a self-excitable active channel is a network of electrically connected Hindmarsh-Rose chaotic neurons.Comment: 15 pages, 5 figures. submitted for publication. to appear in Phys. Rev.

    End-to-end Audiovisual Speech Activity Detection with Bimodal Recurrent Neural Models

    Full text link
    Speech activity detection (SAD) plays an important role in current speech processing systems, including automatic speech recognition (ASR). SAD is particularly difficult in environments with acoustic noise. A practical solution is to incorporate visual information, increasing the robustness of the SAD approach. An audiovisual system has the advantage of being robust to different speech modes (e.g., whisper speech) or background noise. Recent advances in audiovisual speech processing using deep learning have opened opportunities to capture in a principled way the temporal relationships between acoustic and visual features. This study explores this idea proposing a \emph{bimodal recurrent neural network} (BRNN) framework for SAD. The approach models the temporal dynamic of the sequential audiovisual data, improving the accuracy and robustness of the proposed SAD system. Instead of estimating hand-crafted features, the study investigates an end-to-end training approach, where acoustic and visual features are directly learned from the raw data during training. The experimental evaluation considers a large audiovisual corpus with over 60.8 hours of recordings, collected from 105 speakers. The results demonstrate that the proposed framework leads to absolute improvements up to 1.2% under practical scenarios over a VAD baseline using only audio implemented with deep neural network (DNN). The proposed approach achieves 92.7% F1-score when it is evaluated using the sensors from a portable tablet under noisy acoustic environment, which is only 1.0% lower than the performance obtained under ideal conditions (e.g., clean speech obtained with a high definition camera and a close-talking microphone).Comment: Submitted to Speech Communicatio

    Survey of dynamic scheduling in manufacturing systems

    Get PDF

    Mechanisms for the generation and regulation of sequential behaviour

    Get PDF
    A critical aspect of much human behaviour is the generation and regulation of sequential activities. Such behaviour is seen in both naturalistic settings such as routine action and language production and laboratory tasks such as serial recall and many reaction time experiments. There are a variety of computational mechanisms that may support the generation and regulation of sequential behaviours, ranging from those underlying Turing machines to those employed by recurrent connectionist networks. This paper surveys a range of such mechanisms, together with a range of empirical phenomena related to human sequential behaviour. It is argued that the empirical phenomena pose difficulties for most sequencing mechanisms, but that converging evidence from behavioural flexibility, error data arising from when the system is stressed or when it is damaged following brain injury, and between-trial effects in reaction time tasks, point to a hybrid symbolic activation-based mechanism for the generation and regulation of sequential behaviour. Some implications of this view for the nature of mental computation are highlighted

    Can Who-Edits-What Predict Edit Survival?

    Get PDF
    As the number of contributors to online peer-production systems grows, it becomes increasingly important to predict whether the edits that users make will eventually be beneficial to the project. Existing solutions either rely on a user reputation system or consist of a highly specialized predictor that is tailored to a specific peer-production system. In this work, we explore a different point in the solution space that goes beyond user reputation but does not involve any content-based feature of the edits. We view each edit as a game between the editor and the component of the project. We posit that the probability that an edit is accepted is a function of the editor's skill, of the difficulty of editing the component and of a user-component interaction term. Our model is broadly applicable, as it only requires observing data about who makes an edit, what the edit affects and whether the edit survives or not. We apply our model on Wikipedia and the Linux kernel, two examples of large-scale peer-production systems, and we seek to understand whether it can effectively predict edit survival: in both cases, we provide a positive answer. Our approach significantly outperforms those based solely on user reputation and bridges the gap with specialized predictors that use content-based features. It is simple to implement, computationally inexpensive, and in addition it enables us to discover interesting structure in the data.Comment: Accepted at KDD 201

    Introspective physicalism as an approach to the science of consciousness

    Get PDF
    Most ‘theories of consciousness’ are based on vague speculations about the properties of conscious experience. We aim to provide a more solid basis for a science of consciousness. We argue that a theory of consciousness should provide an account of the very processes that allow us to acquire and use information about our own mental states – the processes underlying introspection. This can be achieved through the construction of information processing models that can account for ‘Type-C’ processes. Type-C processes can be specified experimentally by identifying paradigms in which awareness of the stimulus is necessary for an intentional action. The Shallice (1988b) framework is put forward as providing an initial account of Type-C processes, which can relate perceptual consciousness to consciously performed actions. Further, we suggest that this framework may be refined through the investigation of the functions of prefrontal cortex. The formulation of our approach requires us to consider fundamental conceptual and methodological issues associated with consciousness. The most significant of these issues concerns the scientific use of introspective evidence. We outline and justify a conservative methodological approach to the use of introspective evidence, with attention to the difficulties historically associated with its use in psychology

    Neural Network Modeling of Sensory-Motor Control in Animals

    Full text link
    National Science Foundation (IRI 90-24877, IRI 87-16960); Air Force Office of Scientific Research (F49620-92-J-0499); Office of Naval Research (N00014-92-J-1309
    • …
    corecore