390 research outputs found

    Multi-Criterion Mammographic Risk Analysis Supported with Multi-Label Fuzzy-Rough Feature Selection

    Get PDF
    Context and background Breast cancer is one of the most common diseases threatening the human lives globally, requiring effective and early risk analysis for which learning classifiers supported with automated feature selection offer a potential robust solution. Motivation Computer aided risk analysis of breast cancer typically works with a set of extracted mammographic features which may contain significant redundancy and noise, thereby requiring technical developments to improve runtime performance in both computational efficiency and classification accuracy. Hypothesis Use of advanced feature selection methods based on multiple diagnosis criteria may lead to improved results for mammographic risk analysis. Methods An approach for multi-criterion based mammographic risk analysis is proposed, by adapting the recently developed multi-label fuzzy-rough feature selection mechanism. Results A system for multi-criterion mammographic risk analysis is implemented with the aid of multi-label fuzzy-rough feature selection and its performance is positively verified experimentally, in comparison with representative popular mechanisms. Conclusions The novel approach for mammographic risk analysis based on multiple criteria helps improve classification accuracy using selected informative features, without suffering from the redundancy caused by such complex criteria, with the implemented system demonstrating practical efficacy

    Breast cancer disease classification using fuzzy-ID3 algorithm based on association function

    Get PDF
    Breast cancer is the second leading cause of mortality among female cancer patients worldwide. Early detection of breast cancer is considerd as one of the most effective ways to prevent the disease from spreading and enable human can make correct decision on the next process. Automatic diagnostic methods were frequently used to conduct breast cancer diagnoses in order to increase the accuracy and speed of detection. The fuzzy-ID3 algorithm with association function implementation (FID3-AF) is proposed as a classification technique for breast cancer detection. The FID3-AF algorithm is a hybridisation of the fuzzy system, the iterative dichotomizer 3 (ID3) algorithm, and the association function. The fuzzy-neural dynamic-bottleneck-detection (FUZZYDBD) is considered as an automatic fuzzy database definition method, would aid in the development of the fuzzy database for the data fuzzification process in FID3-AF. The FID3-AF overcame ID3’s issue of being unable to handle continuous data. The association function is implemented to minimise overfitting and enhance generalisation ability. The results indicated that FID3-AF is robust in breast cancer classification. A thorough comparison of FID3-AF to numerous existing methods was conducted to validate the proposed method’s competency. This study established that the FID3-AF performed well and outperform other methods in breast cancer classification

    Deep Gaze Velocity Analysis During Mammographic Reading for Biometric Identification of Radiologists

    Get PDF
    Several studies have confirmed that the gaze velocity of the human eye can be utilized as a behavioral biometric or personalized biomarker. In this study, we leverage the local feature representation capacity of convolutional neural networks (CNNs) for eye gaze velocity analysis as the basis for biometric identification of radiologists performing breast cancer screening. Using gaze data collected from 10 radiologists reading 100 mammograms of various diagnoses, we compared the performance of a CNN-based classification algorithm with two deep learning classifiers, deep neural network and deep belief network, and a previously presented hidden Markov model classifier. The study showed that the CNN classifier is superior compared to alternative classification methods based on macro F1-scores derived from 10-fold cross-validation experiments. Our results further support the efficacy of eye gaze velocity as a biometric identifier of medical imaging experts

    Machine Learning Research On Breast And Lung Cancer Detection

    Get PDF
    As the diagnosis of these cancer cells at late stages causes greater pain and raises the likelihood of death, the initial-state cancer finding is crucial to giving the patient the proper care and reducing the risk of dying from cancer. The publication offers a chance to research breast and lung cancer detection techniques as well as various algorithms for cancer early detection. With the aid of various image kinds and test results data sets, hybrid approaches are utilized to identify lung and breast cancer based on the size and form of the cells. The basic concept of breast and lung cancer block diagram is also explained in this study, with an emphasis on the difficulties and potential future applications of cancer detection and diagnosis techniques
    corecore