3,702 research outputs found

    Meta-heuristic algorithms in car engine design: a literature survey

    Get PDF
    Meta-heuristic algorithms are often inspired by natural phenomena, including the evolution of species in Darwinian natural selection theory, ant behaviors in biology, flock behaviors of some birds, and annealing in metallurgy. Due to their great potential in solving difficult optimization problems, meta-heuristic algorithms have found their way into automobile engine design. There are different optimization problems arising in different areas of car engine management including calibration, control system, fault diagnosis, and modeling. In this paper we review the state-of-the-art applications of different meta-heuristic algorithms in engine management systems. The review covers a wide range of research, including the application of meta-heuristic algorithms in engine calibration, optimizing engine control systems, engine fault diagnosis, and optimizing different parts of engines and modeling. The meta-heuristic algorithms reviewed in this paper include evolutionary algorithms, evolution strategy, evolutionary programming, genetic programming, differential evolution, estimation of distribution algorithm, ant colony optimization, particle swarm optimization, memetic algorithms, and artificial immune system

    ADAPTIVE MODEL BASED COMBUSTION PHASING CONTROL FOR MULTI FUEL SPARK IGNITION ENGINES

    Get PDF
    This research describes a physics-based control-oriented feed-forward model, combined with cylinder pressure feedback, to regulate combustion phasing in a spark-ignition engine operating on an unknown mix of fuels. This research may help enable internal combustion engines that are capable of on-the-fly adaptation to a wide range of fuels. These engines could; (1) facilitate a reduction in bio-fuel processing, (2) encourage locally-appropriate bio-fuels to reduce transportation, (3) allow new fuel formulations to enter the market with minimal infrastructure, and (4) enable engine adaptation to pump-to-pump fuel variations. These outcomes will help make bio-fuels cost-competitive with other transportation fuels, lessen dependence on traditional sources of energy, and reduce greenhouse gas emissions from automobiles; all of which are pivotal societal issues. Spark-ignition engines are equipped with a large number of control actuators to satisfy fuel economy targets and maintain regulated emissions compliance. The increased control flexibility also allows for adaptability to a wide range of fuel compositions, while maintaining efficient operation when input fuel is altered. Ignition timing control is of particular interest because it is the last control parameter prior to the combustion event, and significantly influences engine efficiency and emissions. Although Map-based ignition timing control and calibration routines are state of art, they become cumbersome when the number of control degrees of freedom increases are used in the engine. The increased system complexity motivates the use of model-based methods to minimize product development time and ensure calibration flexibility when the engine is altered during the design process. A closed loop model based ignition timing control algorithm is formulated with: 1) a feed forward fuel type sensitive combustion model to predict combustion duration from spark to 50% mass burned; 2) two virtual fuel property observers for octane number and laminar flame speed feedback; 3) an adaptive combustion phasing target model that is able to self-calibrate for wide range of fuel sources input. The proposed closed loop algorithm is experimentally validated in real time on the dynamometer. Satisfactory results are observed and conclusions are made that the closed loop approach is able to regulate combustion phasing for multi fuel adaptive SI engines

    A STUDY OF MODEL-BASED CONTROL STRATEGY FOR A GASOLINE TURBOCHARGED DIRECT INJECTION SPARK IGNITED ENGINE

    Get PDF
    To meet increasingly stringent fuel economy and emissions legislation, more advanced technologies have been added to spark-ignition (SI) engines, thus exponentially increase the complexity and calibration work of traditional map-based engine control. To achieve better engine performance without introducing significant calibration efforts and make the developed control system easily adapt to future engines upgrades and designs, this research proposes a model-based optimal control system for cycle-by-cycle Gasoline Turbocharged Direct Injection (GTDI) SI engine control, which aims to deliver the requested torque output and operate the engine to achieve the best achievable fuel economy and minimum emission under wide range of engine operating conditions. This research develops a model-based ignition timing prediction strategy for combustion phasing (crank angle of fifty percent of the fuel burned, CA50) control. A control-oriented combustion model is developed to predict burn duration from ignition timing to CA50. Using the predicted burn duration, the ignition timing needed for the upcoming cycle to track optimal target CA50 is calculated by a dynamic ignition timing prediction algorithm. A Recursive-Least-Square (RLS) with Variable Forgetting Factor (VFF) based adaptation algorithm is proposed to handle operating-point-dependent model errors caused by inherent errors resulting from modeling assumptions and limited calibration points, which helps to ensure the proper performance of model-based ignition timing prediction strategy throughout the entire engine lifetime. Using the adaptive combustion model, an Adaptive Extended Kalman Filter (AEKF) based CA50 observer is developed to provide filtered CA50 estimation from cyclic variations for the closed-loop combustion phasing control. An economic nonlinear model predictive controller (E-NMPC) based GTDI SI engine control system is developed to simultaneously achieve three objectives: tracking the requested net indicated mean effective pressure (IMEPn), minimizing the SFC, and reducing NOx emissions. The developed E-NMPC engine control system can achieve the above objectives by controlling throttle position, IVC timing, CA50, exhaust valve opening (EVO) timing, and wastegate position at the same time without violating engine operating constraints. A control-oriented engine model is developed and integrated into the E-NMPC to predict future engine behaviors. A high-fidelity 1-D GT-POWER engine model is developed and used as the plant model to tune and validate the developed control system. The performance of the entire model-based engine control system is examined through the software-in-the-loop (SIL) simulation using on-road vehicle test data

    Output Feedback Controller for Operation of Spark Ignition Engines at Lean Conditions Using Neural Networks

    Get PDF
    Spark ignition (SI) engines operating at very lean conditions demonstrate significant nonlinear behavior by exhibiting cycle-to-cycle bifurcation of heat release. Past literature suggests that operating an engine under such lean conditions can significantly reduce NO emissions by as much as 30% and improve fuel efficiency by as much as 5%-10%. At lean conditions, the heat release per engine cycle is not close to constant, as it is when these engines operate under stoichiometric conditions where the equivalence ratio is 1.0. A neural network controller employing output feedback has shown ability in simulation to reduce the nonlinear cyclic dispersion observed under lean operating conditions. This neural network (NN) output controller consists of three NNs: a) an NN observer to estimate the states of the engine such as total fuel and air; b) a second NN for generating virtual input; and c) a third NN for generating actual control input. The uniform ultimate boundedness of all closed-loop signals is demonstrated by using the Lyapunov analysis without using the separation principle. Persistency of the excitation condition, the certainty equivalence principle, and the linearity in the unknown parameter assumptions are also relaxed. The controller is implemented for a research engine as a program running on an embeddable PC that communicates with the engine through a custom hardware interface, and the results are similar to those observed in simulation. Experimental results at an equivalence ratio of 0.77 show a drop in NO emissions by around 98% from stoichiometric levels with an improvement of fuel efficiency by 5%. A 30% drop in unburned hydrocarbons from uncontrolled case is observed at this equivalence ratio of 0.77. Similar performance was observed with the controller on a different engine

    Neural Network Controller Development and Implementation for Spark Ignition Engines with High EGR Levels

    Get PDF
    Past research has shown substantial reductions in the oxides of nitrogen (NOx) concentrations by using 10% -25% exhaust gas recirculation (EGR) in spark ignition (SI) engines (see Dudek and Sain, 1989). However, under high EGR levels, the engine exhibits strong cyclic dispersion in heat release which may lead to instability and unsatisfactory performance preventing commercial engines to operate with high EGR levels. A neural network (NN)-based output feedback controller is developed to reduce cyclic variation in the heat release under high levels of EGR even when the engine dynamics are unknown by using fuel as the control input. A separate control loop was designed for controlling EGR levels. The stability analysis of the closed-loop system is given and the boundedness of the control input is demonstrated by relaxing separation principle, persistency of excitation condition, certainty equivalence principle, and linear in the unknown parameter assumptions. Online training is used for the adaptive NN and no offline training phase is needed. This online learning feature and model-free approach is used to demonstrate the applicability of the controller on a different engine with minimal effort. Simulation results demonstrate that the cyclic dispersion is reduced significantly using the proposed controller when implemented on an engine model that has been validated experimentally. For a single cylinder research engine fitted with a modern four-valve head (Ricardo engine), experimental results at 15% EGR indicate that cyclic dispersion was reduced 33% by the controller, an improvement of fuel efficiency by 2%, and a 90% drop in NOx from stoichiometric operation without EGR was observed. Moreover, unburned hydrocarbons (uHC) drop by 6% due to NN control as compared to the uncontrolled scenario due to the drop in cyclic dispersion. Similar performance was observed with the controller on a different engine

    Studies on SI engine simulation and air/fuel ratio control systems design

    Get PDF
    This thesis was submitted for the degree of Doctor of Philosophy and awarded by Brunel University.More stringent Euro 6 and LEV III emission standards will immediately begin execution on 2014 and 2015 respectively. Accurate air/fuel ratio control can effectively reduce vehicle emission. The simulation of engine dynamic system is a very powerful method for developing and analysing engine and engine controller. Currently, most engine air/fuel ratio control used look-up table combined with proportional and integral (PI) control and this is not robust to system uncertainty and time varying effects. This thesis first develops a simulation package for a port injection spark-ignition engine and this package include engine dynamics, vehicle dynamics as well as driving cycle selection module. The simulations results are very close to the data obtained from laboratory experiments. New controllers have been proposed to control air/fuel ratio in spark ignition engines to maximize the fuel economy while minimizing exhaust emissions. The PID control and fuzzy control methods have been combined into a fuzzy PID control and the effectiveness of this new controller has been demonstrated by simulation tests. A new neural network based predictive control is then designed for further performance improvements. It is based on the combination of inverse control and predictive control methods. The network is trained offline in which the control output is modified to compensate control errors. The simulation evaluations have shown that the new neural controller can greatly improve control air/fuel ratio performance. The test also revealed that the improved AFR control performance can effectively restrict engine harmful emissions into atmosphere, these reduce emissions are important to satisfy more stringent emission standards

    Neural network control of nonstrict feedback and nonaffine nonlinear discrete-time systems with application to engine control

    Get PDF
    In this dissertation, neural networks (NN) approximate unknown nonlinear functions in the system equations, unknown control inputs, and cost functions for two different classes of nonlinear discrete-time systems. Employing NN in closed-loop feedback systems requires that weight update algorithms be stable...Controllers are developed and applied to a nonlinear, discrete-time system of equations for a spark ignition engine model to reduce the cyclic dispersion of heat release --Abstract, page iv

    Artificial Tune of Fuel Ratio: Design a Novel SISO Fuzzy Backstepping Adaptive Variable Structure Control

    Get PDF
    This paper examines single input single output (SISO) chattering free variable structure control (VSC) which controller coefficient is on-line tuned by fuzzy backstepping algorithm. VSC methodology is selected as a framework to construct the control law and address the stability and robustness of the close loop system based on Lyapunove formulation. The main goal is to guarantee acceptable fuel ratio result and adjust. The proposed approach effectively combines the design technique from variable structure controller is based on Lyapunov and fuzzy estimator to estimate the nonlinearity of undefined system dynamic in backstepping controller. The input represents the function between variable structure function, error and the rate of error. The outputs represent fuel ratio, respectively. The fuzzy backstepping methodology is on-line tune the variable structure function based on adaptive methodology. The performance of the SISO VSC which controller coefficient is on-line tuned by fuzzy backstepping algorithm (FBSAVSC) is validated through comparison with VSC and proposed method. Simulation results signify good performance of trajectory in presence of uncertainty torque load. DOI:http://dx.doi.org/10.11591/ijece.v3i2.209
    • 

    corecore