5,705 research outputs found

    A VLSI Neural Network for Color Constancy

    Get PDF
    A system for color correction has been designed, built, and tested successfully; the essential components are three custom chips built using sub-threshold analog CMOS VLSI. The system, based on Land's Retinex theory of color constancy, produces colors similar in many respects to those produced by the visual system. Resistive grids implemented in analog VLSI perform the smoothing operation central to the algorithm at video rates. With the electronic system, the strengths and weaknesses of the algorithm are explored

    Bootstrapping Color Constancy

    Get PDF
    Bootstrapping provides a novel approach to training a neural network to estimate the chromaticity of the illuminant in a scene given image data alone. For initial training, the network requires feedback about the accuracy of the network’s current results. In the case of a network for color constancy, this feedback is the chromaticity of the incident scene illumination. In the past1, perfect feedback has been used, but in the bootstrapping method feedback with a considerable degree of random error can be used to train the network instead. In particular, the grayworld algorithm2, which only provides modest color constancy performance, is used to train a neural network which in the end performs better than the grayworld algorithm used to train it

    A real-time neural system for color constancy

    Get PDF
    A neural network approach to the problem of color constancy is presented. Various algorithms based on Land's retinex theory are discussed with respect to neurobiological parallels, computational efficiency, and suitability for VLSI implementation. The efficiency of one algorithm is improved by the application of resistive grids and is tested in computer simulations; the simulations make clear the strengths and weaknesses of the algorithm. A novel extension to the algorithm is developed to address its weaknesses. An electronic system that is based on the original algorithm and that operates at video rates was built using subthreshold analog CMOS VLSI resistive grids. The system displays color constancy abilities and qualitatively mimics aspects of human color perception

    Mixed Pooling Neural Networks for Color Constancy

    No full text
    International audienceColor constancy is the ability of the human visual system to perceive constant colors for a surface despite changes in the spectrum of the illumination. In computer vision, the main approach consists in estimating the illuminant color and then to remove its impact on the color of the objects. Many image processing algorithms have been proposed to tackle this problem automatically. However, most of these approaches are handcrafted and mostly rely on strong empirical assumptions, e.g., that the average reflectance in a scene is gray. State-of-the-art approaches can perform very well on some given datasets but poorly adapt on some others. In this paper, we have investigated how neural networks-based approaches can be used to deal with the color constancy problem. We have proposed a new network architecture based on existing successful hand-crafted approaches and a large number of improvements to tackle this problem by learning a suitable deep model. We show our results on most of the standard benchmarks used in the color constancy domain

    Ridge Regression Approach to Color Constancy

    Get PDF
    This thesis presents the work on color constancy and its application in the field of computer vision. Color constancy is a phenomena of representing (visualizing) the reflectance properties of the scene independent of the illumination spectrum. The motivation behind this work is two folds:The primary motivation is to seek ‘consistency and stability’ in color reproduction and algorithm performance respectively because color is used as one of the important features in many computer vision applications; therefore consistency of the color features is essential for high application success. Second motivation is to reduce ‘computational complexity’ without sacrificing the primary motivation.This work presents machine learning approach to color constancy. An empirical model is developed from the training data. Neural network and support vector machine are two prominent nonlinear learning theories. The work on support vector machine based color constancy shows its superior performance over neural networks based color constancy in terms of stability. But support vector machine is time consuming method. Alternative approach to support vectormachine, is a simple, fast and analytically solvable linear modeling technique known as ‘Ridge regression’. It learns the dependency between the surface reflectance and illumination from a presented training sample of data. Ridge regression provides answer to the two fold motivation behind this work, i.e., stable and computationally simple approach. The proposed algorithms, ‘Support vector machine’ and ‘Ridge regression’ involves three step processes: First, an input matrix constructed from the preprocessed training data set is trained toobtain a trained model. Second, test images are presented to the trained model to obtain the chromaticity estimate of the illuminants present in the testing images. Finally, linear diagonal transformation is performed to obtain the color corrected image. The results show the effectiveness of the proposed algorithms on both calibrated and uncalibrated data set in comparison to the methods discussed in literature review. Finally, thesis concludes with a complete discussion and summary on comparison between the proposed approaches and other algorithms

    Fully Point-wise Convolutional Neural Network for Modeling Statistical Regularities in Natural Images

    Full text link
    Modeling statistical regularity plays an essential role in ill-posed image processing problems. Recently, deep learning based methods have been presented to implicitly learn statistical representation of pixel distributions in natural images and leverage it as a constraint to facilitate subsequent tasks, such as color constancy and image dehazing. However, the existing CNN architecture is prone to variability and diversity of pixel intensity within and between local regions, which may result in inaccurate statistical representation. To address this problem, this paper presents a novel fully point-wise CNN architecture for modeling statistical regularities in natural images. Specifically, we propose to randomly shuffle the pixels in the origin images and leverage the shuffled image as input to make CNN more concerned with the statistical properties. Moreover, since the pixels in the shuffled image are independent identically distributed, we can replace all the large convolution kernels in CNN with point-wise (1∗11*1) convolution kernels while maintaining the representation ability. Experimental results on two applications: color constancy and image dehazing, demonstrate the superiority of our proposed network over the existing architectures, i.e., using 1/10∼\sim1/100 network parameters and computational cost while achieving comparable performance.Comment: 9 pages, 7 figures. To appear in ACM MM 201
    • …
    corecore