1,978 research outputs found

    Navigation Control of an Automated Guided Underwater Robot using Neural Network Technique

    Get PDF
    In recent years, under water robots play an important role in various under water operations. There is an increase in research in this area because of the application of autonomous underwater robots in several issues like exploring under water environment and resource, doing scientific and military tasks under water. We need good maneuvering capabilities and a well precision for moving in a specified track in these applications. However, control of these under water bots become very difficult due to the highly non-linear and dynamic characteristics of the underwater world. The logical answer to this problem is the application of non-linear controllers. As neural networks (NNs) are characterized by flexibility and an aptitude for dealing with non-linear problems, they are envisaged to be beneficial when used on underwater robots. In this research our artificial intelligence system is based on neural network model for navigation of an Automated Underwater robot in unpredictable and imprecise environment. Thus the back propagation algorithm has been used for the steering analysis of the underwater robot when it is encountered by a left, right and front as well as top obstacle. After training the neural network the neural network pattern was used in the controller of the underwater robot. The simulation of underwater robot under various obstacle conditions are shown using MATLAB

    A survey on uninhabited underwater vehicles (UUV)

    Get PDF
    ASME Early Career Technical Conference, ASME ECTC, October 2-3, 2009, Tuscaloosa, Alabama, USAThis work presents the initiation of our underwater robotics research which will be focused on underwater vehicle-manipulator systems. Our aim is to build an underwater vehicle with a robotic manipulator which has a robust system and also can compensate itself under the influence of the hydrodynamic effects. In this paper, overview of the existing underwater vehicle systems, thruster designs, their dynamic models and control architectures are given. The purpose and results of the existing methods in underwater robotics are investigated

    Adaptive low-level control of autonomous underwater vehicles using deep reinforcement learning

    Get PDF
    Low-level control of autonomous underwater vehicles (AUVs) has been extensively addressed by classical control techniques. However, the variable operating conditions and hostile environments faced by AUVs have driven researchers towards the formulation of adaptive control approaches. The reinforcement learning (RL) paradigm is a powerful framework which has been applied in different formulations of adaptive control strategies for AUVs. However, the limitations of RL approaches have lead towards the emergence of deep reinforcement learning which has become an attractive and promising framework for developing real adaptive control strategies to solve complex control problems for autonomous systems. However, most of the existing applications of deep RL use video images to train the decision making artificial agent but obtaining camera images only for an AUV control purpose could be costly in terms of energy consumption. Moreover, the rewards are not easily obtained directly from the video frames. In this work we develop a deep RL framework for adaptive control applications of AUVs based on an actor-critic goal-oriented deep RL architecture, which takes the available raw sensory information as input and as output the continuous control actions which are the low-level commands for the AUV's thrusters. Experiments on a real AUV demonstrate the applicability of the stated deep RL approach for an autonomous robot control problem.Fil: Carlucho, Ignacio. Universidad Nacional del Centro de la Provincia de Buenos Aires. Centro de Investigaciones en Física e Ingeniería del Centro de la Provincia de Buenos Aires. - Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Tandil. Centro de Investigaciones en Física e Ingeniería del Centro de la Provincia de Buenos Aires. - Provincia de Buenos Aires. Gobernación. Comisión de Investigaciones Científicas. Centro de Investigaciones en Física e Ingeniería del Centro de la Provincia de Buenos Aires; ArgentinaFil: de Paula, Mariano. Universidad Nacional del Centro de la Provincia de Buenos Aires. Centro de Investigaciones en Física e Ingeniería del Centro de la Provincia de Buenos Aires. - Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Tandil. Centro de Investigaciones en Física e Ingeniería del Centro de la Provincia de Buenos Aires. - Provincia de Buenos Aires. Gobernación. Comisión de Investigaciones Científicas. Centro de Investigaciones en Física e Ingeniería del Centro de la Provincia de Buenos Aires; ArgentinaFil: Wang, Sen. Heriot-Watt University; Reino UnidoFil: Petillot, Yvan. Heriot-Watt University; Reino UnidoFil: Acosta, Gerardo Gabriel. Universidad Nacional del Centro de la Provincia de Buenos Aires. Centro de Investigaciones en Física e Ingeniería del Centro de la Provincia de Buenos Aires. - Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Tandil. Centro de Investigaciones en Física e Ingeniería del Centro de la Provincia de Buenos Aires. - Provincia de Buenos Aires. Gobernación. Comisión de Investigaciones Científicas. Centro de Investigaciones en Física e Ingeniería del Centro de la Provincia de Buenos Aires; Argentin

    Task-space dynamic control of underwater robots

    Get PDF
    This thesis is concerned with the control aspects for underwater tasks performed by marine robots. The mathematical models of an underwater vehicle and an underwater vehicle with an onboard manipulator are discussed together with their associated properties. The task-space regulation problem for an underwater vehicle is addressed where the desired target is commonly specified as a point. A new control technique is proposed where the multiple targets are defined as sub-regions. A fuzzy technique is used to handle these multiple sub-region criteria effectively. Due to the unknown gravitational and buoyancy forces, an adaptive term is adopted in the proposed controller. An extension to a region boundary-based control law is then proposed for an underwater vehicle to illustrate the flexibility of the region reaching concept. In this novel controller, a desired target is defined as a boundary instead of a point or region. For a mapping of the uncertain restoring forces, a least-squares estimation algorithm and the inverse Jacobian matrix are utilised in the adaptive control law. To realise a new tracking control concept for a kinematically redundant robot, subregion tracking control schemes with a sub-tasks objective are developed for a UVMS. In this concept, the desired objective is specified as a moving sub-region instead of a trajectory. In addition, due to the system being kinematically redundant, the controller also enables the use of self-motion of the system to perform sub-tasks (drag minimisation, obstacle avoidance, manipulability and avoidance of mechanical joint limits)

    Review of sliding mode control application in autonomous underwater vehicles

    Get PDF
    973-984This paper presents a review of sliding mode control for autonomous underwater vehicles (AUVs). The AUVs are used under water operating in the presence of uncertainties (due to hydrodynamics coefficients) and external disturbances (due to water currents, waves, etc.). Sliding mode controller is one of the nonlinear robust controllers which is robust towards uncertainties, parameter variations and external disturbances. The evolution of sliding mode control in motion control studies of autonomous underwater vehicles is summarized throughout for the last three decades. The performance of the controller is examined based on the chattering reduction, accuracy (steady state error reduction), and robustness against perturbation. The review on sliding mode control for AUVs provides insights for readers to design new techniques and algorithms, to enhance the existing family of sliding mode control strategies into a new one or to merge and re-supervise the control techniques with other control strategies, in which, the aim is to obtain good controller design for AUVs in terms of great performance, stability and robustness

    Automated On-line Diagnosis and Control Configuration in Robotic Systems Using Model Based Analytical Redundancy

    Get PDF
    Because of the increasingly demanding tasks that robotic systems are asked to perform, there is a need to make them more reliable, intelligent, versatile and self-sufficient. Furthermore, throughout the robotic system?s operation, changes in its internal and external environments arise, which can distort trajectory tracking, slow down its performance, decrease its capabilities, and even bring it to a total halt. Changes in robotic systems are inevitable. They have diverse characteristics, magnitudes and origins, from the all-familiar viscous friction to Coulomb/Sticktion friction, and from structural vibrations to air/underwater environmental change. This thesis presents an on-line environmental Change, Detection, Isolation and Accommodation (CDIA) scheme that provides a robotic system the capabilities to achieve demanding requirements and manage the ever-emerging changes. The CDIA scheme is structured around a priori known dynamic models of the robotic system and the changes (faults). In this approach, the system monitors its internal and external environments, detects any changes, identifies and learns them, and makes necessary corrections into its behavior in order to minimize or counteract their effects. A comprehensive study is presented that deals with every stage, aspect, and variation of the CDIA process. One of the novelties of the proposed approach is that the profile of the change may be either time or state-dependent. The contribution of the CDIA scheme is twofold as it provides robustness with respect to unmodeled dynamics and with respect to torque-dependent, state-dependent, structural and external environment changes. The effectiveness of the proposed approach is verified by the development of the CDIA scheme for a SCARA robot. Results of this extensive numerical study are included to verify the applicability of the proposed scheme

    A brief review of neural networks based learning and control and their applications for robots

    Get PDF
    As an imitation of the biological nervous systems, neural networks (NN), which are characterized with powerful learning ability, have been employed in a wide range of applications, such as control of complex nonlinear systems, optimization, system identification and patterns recognition etc. This article aims to bring a brief review of the state-of-art NN for the complex nonlinear systems. Recent progresses of NNs in both theoretical developments and practical applications are investigated and surveyed. Specifically, NN based robot learning and control applications were further reviewed, including NN based robot manipulator control, NN based human robot interaction and NN based behavior recognition and generation

    Biologically inspired learning system

    Get PDF
    Learning Systems used on robots require either a-priori knowledge in the form of models, rules of thumb or databases or require that robot to physically execute multitudes of trial solutions. The first requirement limits the robot’s ability to operate in unstructured changing environments, and the second limits the robot’s service life and resources. In this research a generalized approach to learning was developed through a series of algorithms that can be used for construction of behaviors that are able to cope with unstructured environments through adaptation of both internal parameters and system structure as a result of a goal based supervisory mechanism. Four main learning algorithms have been developed, along with a goal directed random exploration routine. These algorithms all use the concept of learning from a recent memory in order to save the robot/agent from having to exhaustively execute all trial solutions. The first algorithm is a reactive online learning algorithm that uses a supervised learning to find the sensor/action combinations that promote realization of a preprogrammed goal. It produces a feed forward neural network controller that is used to control the robot. The second algorithm is similar to first in that it uses a supervised learning strategy, but it produces a neural network that considers past values, thus providing a non-reactive solution. The third algorithm is a departure from the first two in that uses a non-supervised learning technique to learn the best actions for each situation the robot encounters. The last algorithm builds a graph of the situations encountered by agent/robot in order to learn to associate the best actions with sensor inputs. It uses an unsupervised learning approach based on shortest paths to a goal situation in the graph in order to generate a non-reactive feed forward neural network. Test results were good, the first and third algorithms were tested in a formation maneuvering task in both simulation and onboard mobile robots, while the second and fourth were tested simulation
    corecore