10,382 research outputs found

    Embedding Graphs under Centrality Constraints for Network Visualization

    Full text link
    Visual rendering of graphs is a key task in the mapping of complex network data. Although most graph drawing algorithms emphasize aesthetic appeal, certain applications such as travel-time maps place more importance on visualization of structural network properties. The present paper advocates two graph embedding approaches with centrality considerations to comply with node hierarchy. The problem is formulated first as one of constrained multi-dimensional scaling (MDS), and it is solved via block coordinate descent iterations with successive approximations and guaranteed convergence to a KKT point. In addition, a regularization term enforcing graph smoothness is incorporated with the goal of reducing edge crossings. A second approach leverages the locally-linear embedding (LLE) algorithm which assumes that the graph encodes data sampled from a low-dimensional manifold. Closed-form solutions to the resulting centrality-constrained optimization problems are determined yielding meaningful embeddings. Experimental results demonstrate the efficacy of both approaches, especially for visualizing large networks on the order of thousands of nodes.Comment: Submitted to IEEE Transactions on Visualization and Computer Graphic

    Rigidity and flexibility of biological networks

    Full text link
    The network approach became a widely used tool to understand the behaviour of complex systems in the last decade. We start from a short description of structural rigidity theory. A detailed account on the combinatorial rigidity analysis of protein structures, as well as local flexibility measures of proteins and their applications in explaining allostery and thermostability is given. We also briefly discuss the network aspects of cytoskeletal tensegrity. Finally, we show the importance of the balance between functional flexibility and rigidity in protein-protein interaction, metabolic, gene regulatory and neuronal networks. Our summary raises the possibility that the concepts of flexibility and rigidity can be generalized to all networks.Comment: 21 pages, 4 figures, 1 tabl

    Representation Learning: A Review and New Perspectives

    Full text link
    The success of machine learning algorithms generally depends on data representation, and we hypothesize that this is because different representations can entangle and hide more or less the different explanatory factors of variation behind the data. Although specific domain knowledge can be used to help design representations, learning with generic priors can also be used, and the quest for AI is motivating the design of more powerful representation-learning algorithms implementing such priors. This paper reviews recent work in the area of unsupervised feature learning and deep learning, covering advances in probabilistic models, auto-encoders, manifold learning, and deep networks. This motivates longer-term unanswered questions about the appropriate objectives for learning good representations, for computing representations (i.e., inference), and the geometrical connections between representation learning, density estimation and manifold learning

    DEPLOYING, IMPROVING AND EVALUATING EDGE BUNDLING METHODS FOR VISUALIZING LARGE GRAPHS

    Get PDF
    A tremendous increase in the scale of graphs has been witnessed in a wide range of fields, which demands efficient and effective visualization techniques to assist users in better understandings of large graphs. Conventional node-link diagrams are often used to visualize graphs, whereas excessive edge crossings can easily incur severe visual clutter in the node-link diagram of a large graph. Edge bundling can effectively remedy visual clutter and reveal high-level graph structures. Although significant efforts have been devoted to developing edge bundling, three challenging problems remain. First, edge bundling techniques are often computationally expensive and are not easy to deploy for web-based applications. The state-of-the-art edge bundling methods often require special system supports and techniques such as high-end GPU acceleration for large graphs, which makes these methods less portable, especially for ubiquitous mobile devices. Second, the quantitative quality of edge bundling results is barely assessed in the literature. Currently, the comparison of edge bundling mainly focuses on computational performance and perceptual results. Third, although the family of edge bundling techniques has a rich set of bundling layout, there is a lack of a generic method to generate different styles of edge bundling. In this research, I aim to address these problems and have made the following contributions. First, I provide an efficient framework to deploy edge bundling for web-based platforms by exploiting standard graphics hardware functions and libraries. My framework can generate high-quality edge bundling results on web-based platforms, and achieve a speedup of 50X compared to the previous state-of-the-art edge bundling method on a graph with half of a million edges. Second, I propose a new moving least squares based approach to lower the algorithm complexity of edge bundling. In addition, my approach can generate better bundling results compared to other methods based on a quality metric. Third, I provide an information-theoretic metric to evaluate the edge bundling methods. I leverage information theory in this metric. With my information-theoretic metric, domain users can choose appropriate edge bundling methods with proper parameters for their applications. Last but not least, I present a deep learning framework for edge bundling visualizations. Through a training process that learns the results of a specific edge bundling method, my deep learning framework can infer the final layout of the edge bundling method. My deep learning framework is a generic framework that can generate the corresponding results of different edge bundling methods. Adviser: Hongfeng Y
    • …
    corecore