2,392 research outputs found

    Using artificial neural network for forward kinematic problem of under-constrained cable robots

    Get PDF
    Cable-Driven Parallel Robot has many advantages. However, the problems of cable collision between each other and environment, the lack of proper structure and non-positive cable tension prevent the spread of them. In this work, a neural network (NN) model of under constrained cable robots is presented with external forces applied to the end-effector (EE) for computing the position of it. As in under-constrained robot’s kinematics and statics are innately coupled together, and they contemporaneously should be considered the forward kinematic problem of the robot change to an optimization problem. This approach does not require pre-knowledge of the uncertainties upper bounds and linear regression form of kinematic and dynamic models. Moreover, to ensure that all cables remain in tension, proposed control algorithm benefit the internal force concept in its structure. The main contribution of this paper has three goals. First, a method is used toward kinematic problem of the under constrained cable robot modeling using four bar linkage kinematic concept, which could be used in online control approaches for real-time purposes. Second, in order to track the position of end-effector, an online PD controller is designed by the three error criteria methods such as IAE, ISE and ITSE. Finally, as the third contribution, NN control approach is applied in order to validate the model. A model is created based on the robot’s geometry and dynamic to solve the forward kinematics problem. So, the forward kinematic problem is solved offline and used online. Moreover, an analysis of workspace is performed which discovers that the solution of the forward kinematic problem of the under-constrained cable robots is unique in this case. In addition, a modified local linear model tree algorithm for nonlinear system modelling are proposed. The results show the effectiveness of the proposed approach in modeling the under constrained cable robot

    Deep Forward and Inverse Perceptual Models for Tracking and Prediction

    Full text link
    We consider the problems of learning forward models that map state to high-dimensional images and inverse models that map high-dimensional images to state in robotics. Specifically, we present a perceptual model for generating video frames from state with deep networks, and provide a framework for its use in tracking and prediction tasks. We show that our proposed model greatly outperforms standard deconvolutional methods and GANs for image generation, producing clear, photo-realistic images. We also develop a convolutional neural network model for state estimation and compare the result to an Extended Kalman Filter to estimate robot trajectories. We validate all models on a real robotic system.Comment: 8 pages, International Conference on Robotics and Automation (ICRA) 201

    Forward Kinematic Modelling with Radial Basis Function Neural Network Tuned with a Novel Meta-Heuristic Algorithm for Robotic Manipulators

    Get PDF
    The complexity of forward kinematic modelling increases with the increase in the degrees of freedom for a manipulator. To reduce the computational weight and time lag for desired output transformation, this paper proposes a forward kinematic model mapped with the help of the Radial Basis Function Neural Network (RBFNN) architecture tuned by a novel meta-heuristic algorithm, namely, the Cooperative Search Optimisation Algorithm (CSOA). The architecture presented is able to automatically learn the kinematic properties of the manipulator. Learning is accomplished iteratively based only on the observation of the input–output relationship. Related simulations are carried out on a 3-Degrees of Freedom (DOF) manipulator on the Robot Operating System (ROS). The dataset created from the simulation is divided 65–35 for training–testing of the proposed model. The metrics used for model validation include spread value, cost and runtime for the training dataset, and Mean Relative Error, Normal Mean Square Error, and Mean Absolute Error for the testing dataset. A comparative analysis of the CSOA-RBFNN model is performed with an artificial neural network, support vector regression model, and with with other meta-heuristic RBFNN models, i.e., PSORBFNN and GWO-RBFNN, that show the effectiveness and superiority of the proposed technique.publishedVersio

    IK-FA, a new heuristic inverse kinematics solver using firefly algorithm

    Get PDF
    In this paper, a heuristic method based on Firefly Algorithm is proposed for inverse kinematics problems in articulated robotics. The proposal is called, IK-FA. Solving inverse kinematics, IK, consists in finding a set of joint-positions allowing a specific point of the system to achieve a target position. In IK-FA, the Fireflies positions are assumed to be a possible solution for joints elementary motions. For a robotic system with a known forward kinematic model, IK-Fireflies, is used to generate iteratively a set of joint motions, then the forward kinematic model of the system is used to compute the relative Cartesian positions of a specific end-segment, and to compare it to the needed target position. This is a heuristic approach for solving inverse kinematics without computing the inverse model. IK-FA tends to minimize the distance to a target position, the fitness function could be established as the distance between the obtained forward positions and the desired one, it is subject to minimization. In this paper IK-FA is tested over a 3 links articulated planar system, the evaluation is based on statistical analysis of the convergence and the solution quality for 100 tests. The impact of key FA parameters is also investigated with a focus on the impact of the number of fireflies, the impact of the maximum iteration number and also the impact of (a, ß, ¿, d) parameters. For a given set of valuable parameters, the heuristic converges to a static fitness value within a fix maximum number of iterations. IK-FA has a fair convergence time, for the tested configuration, the average was about 2.3394 × 10-3 seconds with a position error fitness around 3.116 × 10-8 for 100 tests. The algorithm showed also evidence of robustness over the target position, since for all conducted tests with a random target position IK-FA achieved a solution with a position error lower or equal to 5.4722 × 10-9.Peer ReviewedPostprint (author's final draft

    Design and Control of Compliant Tensegrity Robots Through Simulation and Hardware Validation

    Get PDF
    To better understand the role of tensegrity structures in biological systems and their application to robotics, the Dynamic Tensegrity Robotics Lab at NASA Ames Research Center has developed and validated two different software environments for the analysis, simulation, and design of tensegrity robots. These tools, along with new control methodologies and the modular hardware components developed to validate them, are presented as a system for the design of actuated tensegrity structures. As evidenced from their appearance in many biological systems, tensegrity ("tensile-integrity") structures have unique physical properties which make them ideal for interaction with uncertain environments. Yet these characteristics, such as variable structural compliance, and global multi-path load distribution through the tension network, make design and control of bio-inspired tensegrity robots extremely challenging. This work presents the progress in using these two tools in tackling the design and control challenges. The results of this analysis includes multiple novel control approaches for mobility and terrain interaction of spherical tensegrity structures. The current hardware prototype of a six-bar tensegrity, code-named ReCTeR, is presented in the context of this validation

    Synthesis of the Inverse Kinematic Model of Non-Redundant Open-Chain Robotic Systems Using Groebner Basis Theory

    Full text link
    [EN] One of the most important elements of a robot's control system is its Inverse Kinematic Model (IKM), which calculates the position and velocity references required by the robot's actuators to follow a trajectory. The methods that are commonly used to synthesize the IKM of open-chain robotic systems strongly depend on the geometry of the analyzed robot. Those methods are not systematic procedures that could be applied equally in all possible cases. This project presents the development of a systematic procedure to synthesize the IKM of non-redundant open-chain robotic systems using Groebner Basis theory, which does not depend on the geometry of the robot's structure. The inputs to the developed procedure are the robot's Denavit-Hartenberg parameters, while the output is the IKM, ready to be used in the robot's control system or in a simulation of its behavior. The Groebner Basis calculation is done in a two-step process, first computing a basis with Faugere's F4 algorithm and a grevlex monomial order, and later changing the basis with the FGLM algorithm to the desired lexicographic order. This procedure's performance was proved calculating the IKM of a PUMA manipulator and a walking hexapod robot. The errors in the computed references of both IKMs were absolutely negligible in their corresponding workspaces, and their computation times were comparable to those required by the kinematic models calculated by traditional methods. The developed procedure can be applied to all Cartesian robotic systems, SCARA robots, all the non-redundant robotic manipulators that satisfy the in-line wrist condition, and any non-redundant open-chain robot whose IKM should only solve the positioning problem, such as multi-legged walking robots.This research was partially funded by Plan Nacional de I+D+i, Agencia Estatal de Investigacion del Ministerio de Economia, Industria y Competitividad del Gobierno de Espana, in the project FEDER-CICYT DPI2017-84201-R.Guzmán-Giménez, J.; Valera Fernández, Á.; Mata Amela, V.; Díaz-Rodríguez, MÁ. (2020). Synthesis of the Inverse Kinematic Model of Non-Redundant Open-Chain Robotic Systems Using Groebner Basis Theory. Applied Sciences. 10(8):1-22. https://doi.org/10.3390/app10082781S122108Atique, M. M. U., Sarker, M. R. I., & Ahad, M. A. R. (2018). Development of an 8DOF quadruped robot and implementation of Inverse Kinematics using Denavit-Hartenberg convention. Heliyon, 4(12), e01053. doi:10.1016/j.heliyon.2018.e01053Flanders, M., & Kavanagh, R. C. (2015). Build-A-Robot: Using virtual reality to visualize the Denavit-Hartenberg parameters. Computer Applications in Engineering Education, 23(6), 846-853. doi:10.1002/cae.21656Özgür, E., & Mezouar, Y. (2016). Kinematic modeling and control of a robot arm using unit dual quaternions. Robotics and Autonomous Systems, 77, 66-73. doi:10.1016/j.robot.2015.12.005Wang, X., Han, D., Yu, C., & Zheng, Z. (2012). The geometric structure of unit dual quaternion with application in kinematic control. Journal of Mathematical Analysis and Applications, 389(2), 1352-1364. doi:10.1016/j.jmaa.2012.01.016Barrientos, A., Álvarez, M., Hernández, J. D., del Cerro, J., & Rossi, C. (2012). Modelado de Caden as Cinemáticas mediante Matrices de Desplazamiento. Una alternativa al método de Denavit-Hartenberg. Revista Iberoamericana de Automática e Informática Industrial RIAI, 9(4), 371-382. doi:10.1016/j.riai.2012.09.004Virgil Petrescu, R. V., Aversa, R., Apicella, A., Mirsayar, M., Kozaitis, S., Abu-Lebdeh, T., & Tiberiu Petrescu, F. I. (2017). Geometry and Inverse Kinematic at the MP3R Mobile Systems. Journal of Mechatronics and Robotics, 1(2), 58-65. doi:10.3844/jmrsp.2017.58.65Chen, S., Luo, M., Abdelaziz, O., & Jiang, G. (2017). A general analytical algorithm for collaborative robot (cobot) with 6 degree of freedom (DOF). 2017 International Conference on Applied System Innovation (ICASI). doi:10.1109/icasi.2017.7988522Bouzgou, K., & Ahmed-Foitih, Z. (2014). Geometric modeling and singularity of 6 DOF Fanuc 200IC robot. Fourth edition of the International Conference on the Innovative Computing Technology (INTECH 2014). doi:10.1109/intech.2014.6927745Mahajan, A., Singh, H. P., & Sukavanam, N. (2017). An unsupervised learning based neural network approach for a robotic manipulator. International Journal of Information Technology, 9(1), 1-6. doi:10.1007/s41870-017-0002-2Duka, A.-V. (2014). Neural Network based Inverse Kinematics Solution for Trajectory Tracking of a Robotic Arm. Procedia Technology, 12, 20-27. doi:10.1016/j.protcy.2013.12.451Toshani, H., & Farrokhi, M. (2014). Real-time inverse kinematics of redundant manipulators using neural networks and quadratic programming: A Lyapunov-based approach. Robotics and Autonomous Systems, 62(6), 766-781. doi:10.1016/j.robot.2014.02.005Rokbani, N., & Alimi, A. M. (2013). Inverse Kinematics Using Particle Swarm Optimization, A Statistical Analysis. Procedia Engineering, 64, 1602-1611. doi:10.1016/j.proeng.2013.09.242Jiang, G., Luo, M., Bai, K., & Chen, S. (2017). A Precise Positioning Method for a Puncture Robot Based on a PSO-Optimized BP Neural Network Algorithm. Applied Sciences, 7(10), 969. doi:10.3390/app7100969Köker, R. (2013). A genetic algorithm approach to a neural-network-based inverse kinematics solution of robotic manipulators based on error minimization. Information Sciences, 222, 528-543. doi:10.1016/j.ins.2012.07.051Rokbani, N., Casals, A., & Alimi, A. M. (2014). IK-FA, a New Heuristic Inverse Kinematics Solver Using Firefly Algorithm. Computational Intelligence Applications in Modeling and Control, 369-395. doi:10.1007/978-3-319-11017-2_15Buchberger, B. (2001). Multidimensional Systems and Signal Processing, 12(3/4), 223-251. doi:10.1023/a:1011949421611Kendricks, K. D. (2013). A kinematic analysis of the gmf a-510 robot: An introduction and application of groebner basis theory. Journal of Interdisciplinary Mathematics, 16(2-03), 147-169. doi:10.1080/09720502.2013.800304Wang, Y., Hang, L., & Yang, T. (2006). Inverse Kinematics Analysis of General 6R Serial Robot Mechanism Based on Groebner Base. Frontiers of Mechanical Engineering in China, 1(1), 115-124. doi:10.1007/s11465-005-0022-7Abbasnejad, G., & Carricato, M. (2015). Direct Geometrico-static Problem of Underconstrained Cable-Driven Parallel Robots With nn Cables. IEEE Transactions on Robotics, 31(2), 468-478. doi:10.1109/tro.2015.2393173Rameau, J.-F., & Serré, P. (2015). Computing mobility condition using Groebner basis. Mechanism and Machine Theory, 91, 21-38. doi:10.1016/j.mechmachtheory.2015.04.003Xiguang Huang, & Guangpin He. (2009). Forward kinematics of the general Stewart-Gough platform using Gröbner basis. 2009 International Conference on Mechatronics and Automation. doi:10.1109/icma.2009.5246088Uchida, T., & McPhee, J. (2012). Using Gröbner bases to generate efficient kinematic solutions for the dynamic simulation of multi-loop mechanisms. Mechanism and Machine Theory, 52, 144-157. doi:10.1016/j.mechmachtheory.2012.01.015Faugère, J.-C. (2010). FGb: A Library for Computing Gröbner Bases. Lecture Notes in Computer Science, 84-87. doi:10.1007/978-3-642-15582-6_17Faugére, J.-C. (1999). A new efficient algorithm for computing Gröbner bases (F4). Journal of Pure and Applied Algebra, 139(1-3), 61-88. doi:10.1016/s0022-4049(99)00005-5Faugère, J. C., Gianni, P., Lazard, D., & Mora, T. (1993). Efficient Computation of Zero-dimensional Gröbner Bases by Change of Ordering. Journal of Symbolic Computation, 16(4), 329-344. doi:10.1006/jsco.1993.1051Salzer, H. E. (1960). A note on the solution of quartic equations. Mathematics of Computation, 14(71), 279-279. doi:10.1090/s0025-5718-1960-0117882-
    corecore