2,117 research outputs found

    You are AllSet: A Multiset Function Framework for Hypergraph Neural Networks

    Full text link
    Hypergraphs are used to model higher-order interactions amongst agents and there exist many practically relevant instances of hypergraph datasets. To enable efficient processing of hypergraph-structured data, several hypergraph neural network platforms have been proposed for learning hypergraph properties and structure, with a special focus on node classification. However, almost all existing methods use heuristic propagation rules and offer suboptimal performance on many datasets. We propose AllSet, a new hypergraph neural network paradigm that represents a highly general framework for (hyper)graph neural networks and for the first time implements hypergraph neural network layers as compositions of two multiset functions that can be efficiently learned for each task and each dataset. Furthermore, AllSet draws on new connections between hypergraph neural networks and recent advances in deep learning of multiset functions. In particular, the proposed architecture utilizes Deep Sets and Set Transformer architectures that allow for significant modeling flexibility and offer high expressive power. To evaluate the performance of AllSet, we conduct the most extensive experiments to date involving ten known benchmarking datasets and three newly curated datasets that represent significant challenges for hypergraph node classification. The results demonstrate that AllSet has the unique ability to consistently either match or outperform all other hypergraph neural networks across the tested datasets. Our implementation and dataset will be released upon acceptance

    Saliency-based Sequential Image Attention with Multiset Prediction

    Full text link
    Humans process visual scenes selectively and sequentially using attention. Central to models of human visual attention is the saliency map. We propose a hierarchical visual architecture that operates on a saliency map and uses a novel attention mechanism to sequentially focus on salient regions and take additional glimpses within those regions. The architecture is motivated by human visual attention, and is used for multi-label image classification on a novel multiset task, demonstrating that it achieves high precision and recall while localizing objects with its attention. Unlike conventional multi-label image classification models, the model supports multiset prediction due to a reinforcement-learning based training process that allows for arbitrary label permutation and multiple instances per label.Comment: To appear in Advances in Neural Information Processing Systems 30 (NIPS 2017

    How Powerful are Graph Neural Networks?

    Full text link
    Graph Neural Networks (GNNs) are an effective framework for representation learning of graphs. GNNs follow a neighborhood aggregation scheme, where the representation vector of a node is computed by recursively aggregating and transforming representation vectors of its neighboring nodes. Many GNN variants have been proposed and have achieved state-of-the-art results on both node and graph classification tasks. However, despite GNNs revolutionizing graph representation learning, there is limited understanding of their representational properties and limitations. Here, we present a theoretical framework for analyzing the expressive power of GNNs to capture different graph structures. Our results characterize the discriminative power of popular GNN variants, such as Graph Convolutional Networks and GraphSAGE, and show that they cannot learn to distinguish certain simple graph structures. We then develop a simple architecture that is provably the most expressive among the class of GNNs and is as powerful as the Weisfeiler-Lehman graph isomorphism test. We empirically validate our theoretical findings on a number of graph classification benchmarks, and demonstrate that our model achieves state-of-the-art performance

    Provably Powerful Graph Networks

    Full text link
    Recently, the Weisfeiler-Lehman (WL) graph isomorphism test was used to measure the expressive power of graph neural networks (GNN). It was shown that the popular message passing GNN cannot distinguish between graphs that are indistinguishable by the 1-WL test (Morris et al. 2018; Xu et al. 2019). Unfortunately, many simple instances of graphs are indistinguishable by the 1-WL test. In search for more expressive graph learning models we build upon the recent k-order invariant and equivariant graph neural networks (Maron et al. 2019a,b) and present two results: First, we show that such k-order networks can distinguish between non-isomorphic graphs as good as the k-WL tests, which are provably stronger than the 1-WL test for k>2. This makes these models strictly stronger than message passing models. Unfortunately, the higher expressiveness of these models comes with a computational cost of processing high order tensors. Second, setting our goal at building a provably stronger, simple and scalable model we show that a reduced 2-order network containing just scaled identity operator, augmented with a single quadratic operation (matrix multiplication) has a provable 3-WL expressive power. Differently put, we suggest a simple model that interleaves applications of standard Multilayer-Perceptron (MLP) applied to the feature dimension and matrix multiplication. We validate this model by presenting state of the art results on popular graph classification and regression tasks. To the best of our knowledge, this is the first practical invariant/equivariant model with guaranteed 3-WL expressiveness, strictly stronger than message passing models

    Loss Functions for Multiset Prediction

    Full text link
    We study the problem of multiset prediction. The goal of multiset prediction is to train a predictor that maps an input to a multiset consisting of multiple items. Unlike existing problems in supervised learning, such as classification, ranking and sequence generation, there is no known order among items in a target multiset, and each item in the multiset may appear more than once, making this problem extremely challenging. In this paper, we propose a novel multiset loss function by viewing this problem from the perspective of sequential decision making. The proposed multiset loss function is empirically evaluated on two families of datasets, one synthetic and the other real, with varying levels of difficulty, against various baseline loss functions including reinforcement learning, sequence, and aggregated distribution matching loss functions. The experiments reveal the effectiveness of the proposed loss function over the others.Comment: NIPS 201

    Dynamic Cell Structure via Recursive-Recurrent Neural Networks

    Full text link
    In a recurrent setting, conventional approaches to neural architecture search find and fix a general model for all data samples and time steps. We propose a novel algorithm that can dynamically search for the structure of cells in a recurrent neural network model. Based on a combination of recurrent and recursive neural networks, our algorithm is able to construct customized cell structures for each data sample and time step, allowing for a more efficient architecture search than existing models. Experiments on three common datasets show that the algorithm discovers high-performance cell architectures and achieves better prediction accuracy compared to the GRU structure for language modelling and sentiment analysis

    Towards combinatorial clustering: preliminary research survey

    Full text link
    The paper describes clustering problems from the combinatorial viewpoint. A brief systemic survey is presented including the following: (i) basic clustering problems (e.g., classification, clustering, sorting, clustering with an order over cluster), (ii) basic approaches to assessment of objects and object proximities (i.e., scales, comparison, aggregation issues), (iii) basic approaches to evaluation of local quality characteristics for clusters and total quality characteristics for clustering solutions, (iv) clustering as multicriteria optimization problem, (v) generalized modular clustering framework, (vi) basic clustering models/methods (e.g., hierarchical clustering, k-means clustering, minimum spanning tree based clustering, clustering as assignment, detection of clisue/quasi-clique based clustering, correlation clustering, network communities based clustering), Special attention is targeted to formulation of clustering as multicriteria optimization models. Combinatorial optimization models are used as auxiliary problems (e.g., assignment, partitioning, knapsack problem, multiple choice problem, morphological clique problem, searching for consensus/median for structures). Numerical examples illustrate problem formulations, solving methods, and applications. The material can be used as follows: (a) a research survey, (b) a fundamental for designing the structure/architecture of composite modular clustering software, (c) a bibliography reference collection, and (d) a tutorial.Comment: 102 pages, 66 figures, 67 table

    Principal Neighbourhood Aggregation for Graph Nets

    Full text link
    Graph Neural Networks (GNNs) have been shown to be effective models for different predictive tasks on graph-structured data. Recent work on their expressive power has focused on isomorphism tasks and countable feature spaces. We extend this theoretical framework to include continuous features - which occur regularly in real-world input domains and within the hidden layers of GNNs - and we demonstrate the requirement for multiple aggregation functions in this context. Accordingly, we propose Principal Neighbourhood Aggregation (PNA), a novel architecture combining multiple aggregators with degree-scalers (which generalize the sum aggregator). Finally, we compare the capacity of different models to capture and exploit the graph structure via a novel benchmark containing multiple tasks taken from classical graph theory, alongside existing benchmarks from real-world domains, all of which demonstrate the strength of our model. With this work, we hope to steer some of the GNN research towards new aggregation methods which we believe are essential in the search for powerful and robust models

    BourGAN: Generative Networks with Metric Embeddings

    Full text link
    This paper addresses the mode collapse for generative adversarial networks (GANs). We view modes as a geometric structure of data distribution in a metric space. Under this geometric lens, we embed subsamples of the dataset from an arbitrary metric space into the l2 space, while preserving their pairwise distance distribution. Not only does this metric embedding determine the dimensionality of the latent space automatically, it also enables us to construct a mixture of Gaussians to draw latent space random vectors. We use the Gaussian mixture model in tandem with a simple augmentation of the objective function to train GANs. Every major step of our method is supported by theoretical analysis, and our experiments on real and synthetic data confirm that the generator is able to produce samples spreading over most of the modes while avoiding unwanted samples, outperforming several recent GAN variants on a number of metrics and offering new features.Comment: Neural Information Processing Systems, 201

    Equivariant Entity-Relationship Networks

    Full text link
    The relational model is a ubiquitous representation of big-data, in part due to its extensive use in databases. In this paper, we propose the Equivariant Entity-Relationship Network (EERN), which is a Multilayer Perceptron equivariant to the symmetry transformations of the Entity-Relationship model. To this end, we identify the most expressive family of linear maps that are exactly equivariant to entity relationship symmetries, and further show that they subsume recently introduced equivariant maps for sets, exchangeable tensors, and graphs. The proposed feed-forward layer has linear complexity in the data and can be used for both inductive and transductive reasoning about relational databases, including database embedding, and the prediction of missing records. This provides a principled theoretical foundation for the application of deep learning to one of the most abundant forms of data. Empirically, EERN outperforms different variants of coupled matrix tensor factorization in both synthetic and real-data experiments
    corecore