2,505 research outputs found

    2D+3D Indoor Scene Understanding from a Single Monocular Image

    Get PDF
    Scene understanding, as a broad field encompassing many subtopics, has gained great interest in recent years. Among these subtopics, indoor scene understanding, having its own specific attributes and challenges compared to outdoor scene under- standing, has drawn a lot of attention. It has potential applications in a wide variety of domains, such as robotic navigation, object grasping for personal robotics, augmented reality, etc. To our knowledge, existing research for indoor scenes typically makes use of depth sensors, such as Kinect, that is however not always available. In this thesis, we focused on addressing the indoor scene understanding tasks in a general case, where only a monocular color image of the scene is available. Specifically, we first studied the problem of estimating a detailed depth map from a monocular image. Then, benefiting from deep-learning-based depth estimation, we tackled the higher-level tasks of 3D box proposal generation, and scene parsing with instance segmentation, semantic labeling and support relationship inference from a monocular image. Our research on indoor scene understanding provides a comprehensive scene interpretation at various perspectives and scales. For monocular image depth estimation, previous approaches are limited in that they only reason about depth locally on a single scale, and do not utilize the important information of geometric scene structures. Here, we developed a novel graphical model, which reasons about detailed depth while leveraging geometric scene structures at multiple scales. For 3D box proposals, to our best knowledge, our approach constitutes the first attempt to reason about class-independent 3D box proposals from a single monocular image. To this end, we developed a novel integrated, differentiable framework that estimates depth, extracts a volumetric scene representation and generates 3D proposals. At the core of this framework lies a novel residual, differentiable truncated signed distance function module, which is able to handle the relatively low accuracy of the predicted depth map. For scene parsing, we tackled its three subtasks of instance segmentation, se- mantic labeling, and the support relationship inference on instances. Existing work typically reasons about these individual subtasks independently. Here, we leverage the fact that they bear strong connections, which can facilitate addressing these sub- tasks if modeled properly. To this end, we developed an integrated graphical model that reasons about the mutual relationships of the above subtasks. In summary, in this thesis, we introduced novel and effective methodologies for each of three indoor scene understanding tasks, i.e., depth estimation, 3D box proposal generation, and scene parsing, and exploited the dependencies on depth estimates of the latter two tasks. Evaluation on several benchmark datasets demonstrated the effectiveness of our algorithms and the benefits of utilizing depth estimates for higher-level tasks

    Modeling Language Variation and Universals: A Survey on Typological Linguistics for Natural Language Processing

    Get PDF
    Linguistic typology aims to capture structural and semantic variation across the world's languages. A large-scale typology could provide excellent guidance for multilingual Natural Language Processing (NLP), particularly for languages that suffer from the lack of human labeled resources. We present an extensive literature survey on the use of typological information in the development of NLP techniques. Our survey demonstrates that to date, the use of information in existing typological databases has resulted in consistent but modest improvements in system performance. We show that this is due to both intrinsic limitations of databases (in terms of coverage and feature granularity) and under-employment of the typological features included in them. We advocate for a new approach that adapts the broad and discrete nature of typological categories to the contextual and continuous nature of machine learning algorithms used in contemporary NLP. In particular, we suggest that such approach could be facilitated by recent developments in data-driven induction of typological knowledge
    • …
    corecore