35,576 research outputs found

    Reconstructing dynamical networks via feature ranking

    Full text link
    Empirical data on real complex systems are becoming increasingly available. Parallel to this is the need for new methods of reconstructing (inferring) the topology of networks from time-resolved observations of their node-dynamics. The methods based on physical insights often rely on strong assumptions about the properties and dynamics of the scrutinized network. Here, we use the insights from machine learning to design a new method of network reconstruction that essentially makes no such assumptions. Specifically, we interpret the available trajectories (data) as features, and use two independent feature ranking approaches -- Random forest and RReliefF -- to rank the importance of each node for predicting the value of each other node, which yields the reconstructed adjacency matrix. We show that our method is fairly robust to coupling strength, system size, trajectory length and noise. We also find that the reconstruction quality strongly depends on the dynamical regime

    Measuring Shared Information and Coordinated Activity in Neuronal Networks

    Get PDF
    Most nervous systems encode information about stimuli in the responding activity of large neuronal networks. This activity often manifests itself as dynamically coordinated sequences of action potentials. Since multiple electrode recordings are now a standard tool in neuroscience research, it is important to have a measure of such network-wide behavioral coordination and information sharing, applicable to multiple neural spike train data. We propose a new statistic, informational coherence, which measures how much better one unit can be predicted by knowing the dynamical state of another. We argue informational coherence is a measure of association and shared information which is superior to traditional pairwise measures of synchronization and correlation. To find the dynamical states, we use a recently-introduced algorithm which reconstructs effective state spaces from stochastic time series. We then extend the pairwise measure to a multivariate analysis of the network by estimating the network multi-information. We illustrate our method by testing it on a detailed model of the transition from gamma to beta rhythms.Comment: 8 pages, 6 figure
    corecore