457 research outputs found

    Dynamic bandwidth allocation in ATM networks

    Get PDF
    Includes bibliographical references.This thesis investigates bandwidth allocation methodologies to transport new emerging bursty traffic types in ATM networks. However, existing ATM traffic management solutions are not readily able to handle the inevitable problem of congestion as result of the bursty traffic from the new emerging services. This research basically addresses bandwidth allocation issues for bursty traffic by proposing and exploring the concept of dynamic bandwidth allocation and comparing it to the traditional static bandwidth allocation schemes

    Application of learning algorithms to traffic management in integrated services networks.

    Get PDF
    SIGLEAvailable from British Library Document Supply Centre-DSC:DXN027131 / BLDSC - British Library Document Supply CentreGBUnited Kingdo

    Adaptive Neural Network Controller for ATM Traffic

    Get PDF
    Broadband-Integrated Services Digital Networks (B-ISDN), along with Asynchronous Transfer Mode (ATM), were designed to meet the requirements of modern communication networks to handle multiple users and a wide variety of diverse traffic including voice, data and video. ATM responds to requests for admission to the network by analyzing whether or not the grade of service (GOS) requirement, specified in the admission request, can be guaranteed without violating the GOS guaranteed to traffic already accepted into the network. The GOS is typically a parameter such as cell loss rate (CLR), average delay, or some other measurement associated with network performance. In order to develop a tractable mathematical algorithm for controlling admission, an accurate model of the communication network and traffic in question is necessary. The complex and dynamic nature of these communication networks make them very difficult to model. Even when such a model can be developed, often with unrealistic simplifications or unsupportable assumptions, the associated mathematical algorithm is frequently excessively cumbersome and timely processing of an admission request is lost. An alternative to conventional mathematical algorithms for cases like these is the use of neural networks (NN). NNs can learn complicated functions relating the inputs and outputs of a system without prior knowledge about the system itself. For ATM B-ISDN networks, NNs can learn the function relating input traffic parameters and resulting network performance by training on an appropriate set of traffic parameter inputs and resulting GOS outputs. In this work three neural network admission controller schemes are examined. The Bayes error rate, as bounded by the Parzen window technique, is also introduced as a benchmark for measuring the performance of these admission controllers

    An intelligent approach to quality of service for MPEG-4 video transmission in IEEE 802.15.1

    Get PDF
    Nowadays, wireless connectivity is becoming ubiquitous spreading to companies and in domestic areas. IEEE 802.15.1 commonly known as Bluetooth is high-quality, high-security, high-speed and low-cost radio signal technology. This wireless technology allows a maximum access range of 100 meters yet needs power as low as 1mW. Regrettably, IEEE 802.15.1 has a very limited bandwidth. This limitation can become a real problem If the user wishes to transmit a large amount of data in a very short time. The version 1.2 which is used in this project could only carry a maximum download rate of 724Kbps and an upload rate of 54Kbps In its asynchronous mode. But video needs a very large bandwidth to be transmitted with a sufficient level of quality. Video transmission over IEEE 802.15.1 networks would therefore be difficult to achieve, due to the limited bandwidth. Hence, a solution to transmit digital video with a sufficient quality of picture to arrive at the receiving end is required. A hybrid scheme has been developed in this thesis, comprises of a fuzzy logic set of rules and an artificial neural network algorithms. MPEG-4 video compression has been used in this work to optimise the transmission. This research further utilises an ‘added-buffer’ to prevent excessive data loss of MPEG-4 video over IEEE 802.15.1transmission and subsequently increase picture quality. The neural-fuzzy scheme regulates the output rate of the added-buffer to ensure that MPEG-4 video stream conforms to the traffic conditions of the IEEE 802.15.1 channel during the transmission period, that is to send more data when the bandwidth is not fully used and keep the data in the buffers if the bandwidth is overused. Computer simulation results confirm that intelligence techniques and added-buffer do improve quality of picture, reduce data loss and communication delay, as compared with conventional MPEG video transmission over IEEE 802.15.1

    Modeling And Dynamic Resource Allocation For High Definition And Mobile Video Streams

    Get PDF
    Video streaming traffic has been surging in the last few years, which has resulted in an increase of its Internet traffic share on a daily basis. The importance of video streaming management has been emphasized with the advent of High Definition: HD) video streaming, as it requires by its nature more network resources. In this dissertation, we provide a better support for managing HD video traffic over both wireless and wired networks through several contributions. We present a simple, general and accurate video source model: Simplified Seasonal ARIMA Model: SAM). SAM is capable of capturing the statistical characteristics of video traces with less than 5% difference from their calculated optimal models. SAM is shown to be capable of modeling video traces encoded with MPEG-4 Part2, MPEG-4 Part10, and Scalable Video Codec: SVC) standards, using various encoding settings. We also provide a large and publicly-available collection of HD video traces along with their analyses results. These analyses include a full statistical analysis of HD videos, in addition to modeling, factor and cluster analyses. These results show that by using SAM, we can achieve up to 50% improvement in video traffic prediction accuracy. In addition, we developed several video tools, including an HD video traffic generator based on our model. Finally, to improve HD video streaming resource management, we present a SAM-based delay-guaranteed dynamic resource allocation: DRA) scheme that can provide up to 32.4% improvement in bandwidth utilization

    Quality of Service Controlled Multimedia Transport Protocol

    Get PDF
    PhDThis research looks at the design of an open transport protocol that supports a range of services including multimedia over low data-rate networks. Low data-rate multimedia applications require a system that provides quality of service (QoS) assurance and flexibility. One promising field is the area of content-based coding. Content-based systems use an array of protocols to select the optimum set of coding algorithms. A content-based transport protocol integrates a content-based application to a transmission network. General transport protocols form a bottleneck in low data-rate multimedia communicationbsy limiting throughpuot r by not maintainingt iming requirementsT. his work presents an original model of a transport protocol that eliminates the bottleneck by introducing a flexible yet efficient algorithm that uses an open approach to flexibility and holistic architectureto promoteQ oS.T he flexibility andt ransparenccyo mesi n the form of a fixed syntaxt hat providesa seto f transportp rotocols emanticsT. he mediaQ oSi s maintained by defining a generic descriptor. Overall, the structure of the protocol is based on a single adaptablea lgorithm that supportsa pplication independencen, etwork independencea nd quality of service. The transportp rotocol was evaluatedth rougha set of assessmentos:f f-line; off-line for a specific application; and on-line for a specific application. Application contexts used MPEG-4 test material where the on-line assessmenuts eda modified MPEG-4 pl; yer. The performanceo f the QoSc ontrolledt ransportp rotocoli s often bettert hano thers chemews hen appropriateQ oS controlledm anagemenatl gorithmsa re selectedT. his is shownf irst for an off-line assessmenwt here the performancei s compared between the QoS controlled multiplexer,a n emulatedM PEG-4F lexMux multiplexers chemea, ndt he targetr equirements. The performanceis also shownt o be better in a real environmentw hen the QoS controlled multiplexeri s comparedw ith the real MPEG-4F lexMux scheme

    Some aspects of traffic control and performance evaluation of ATM networks

    Get PDF
    The emerging high-speed Asynchronous Transfer Mode (ATM) networks are expected to integrate through statistical multiplexing large numbers of traffic sources having a broad range of statistical characteristics and different Quality of Service (QOS) requirements. To achieve high utilisation of network resources while maintaining the QOS, efficient traffic management strategies have to be developed. This thesis considers the problem of traffic control for ATM networks. The thesis studies the application of neural networks to various ATM traffic control issues such as feedback congestion control, traffic characterization, bandwidth estimation, and Call Admission Control (CAC). A novel adaptive congestion control approach based on a neural network that uses reinforcement learning is developed. It is shown that the neural controller is very effective in providing general QOS control. A Finite Impulse Response (FIR) neural network is proposed to adaptively predict the traffic arrival process by learning the relationship between the past and future traffic variations. On the basis of this prediction, a feedback flow control scheme at input access nodes of the network is presented. Simulation results demonstrate significant performance improvement over conventional control mechanisms. In addition, an accurate yet computationally efficient approach to effective bandwidth estimation for multiplexed connections is investigated. In this method, a feed forward neural network is employed to model the nonlinear relationship between the effective bandwidth and the traffic situations and a QOS measure. Applications of this approach to admission control, bandwidth allocation and dynamic routing are also discussed. A detailed investigation has indicated that CAC schemes based on effective bandwidth approximation can be very conservative and prevent optimal use of network resources. A modified effective bandwidth CAC approach is therefore proposed to overcome the drawback of conventional methods. Considering statistical multiplexing between traffic sources, we directly calculate the effective bandwidth of the aggregate traffic which is modelled by a two-state Markov modulated Poisson process via matching four important statistics. We use the theory of large deviations to provide a unified description of effective bandwidths for various traffic sources and the associated ATM multiplexer queueing performance approximations, illustrating their strengths and limitations. In addition, a more accurate estimation method for ATM QOS parameters based on the Bahadur-Rao theorem is proposed, which is a refinement of the original effective bandwidth approximation and can lead to higher link utilisation

    Distributed Cognitive RAT Selection in 5G Heterogeneous Networks: A Machine Learning Approach

    Get PDF
    The leading role of the HetNet (Heterogeneous Networks) strategy as the key Radio Access Network (RAN) architecture for future 5G networks poses serious challenges to the current cell selection mechanisms used in cellular networks. The max-SINR algorithm, although effective historically for performing the most essential networking function of wireless networks, is inefficient at best and obsolete at worst in 5G HetNets. The foreseen embarrassment of riches and diversified propagation characteristics of network attachment points spanning multiple Radio Access Technologies (RAT) requires novel and creative context-aware system designs. The association and routing decisions, in the context of single-RAT or multi-RAT connections, need to be optimized to efficiently exploit the benefits of the architecture. However, the high computational complexity required for multi-parametric optimization of utility functions, the difficulty of modeling and solving Markov Decision Processes, the lack of guarantees of stability of Game Theory algorithms, and the rigidness of simpler methods like Cell Range Expansion and operator policies managed by the Access Network Discovery and Selection Function (ANDSF), makes neither of these state-of-the-art approaches a favorite. This Thesis proposes a framework that relies on Machine Learning techniques at the terminal device-level for Cognitive RAT Selection. The use of cognition allows the terminal device to learn both a multi-parametric state model and effective decision policies, based on the experience of the device itself. This implies that a terminal, after observing its environment during a learning period, may formulate a system characterization and optimize its own association decisions without any external intervention. In our proposal, this is achieved through clustering of appropriately defined feature vectors for building a system state model, supervised classification to obtain the current system state, and reinforcement learning for learning good policies. This Thesis describes the above framework in detail and recommends adaptations based on the experimentation with the X-means, k-Nearest Neighbors, and Q-learning algorithms, the building blocks of the solution. The network performance of the proposed framework is evaluated in a multi-agent environment implemented in MATLAB where it is compared with alternative RAT selection mechanisms
    • …
    corecore