3,892 research outputs found

    Design and Control of Electrical Motor Drives

    Get PDF
    Dear Colleagues, I am very happy to have this Special Issue of the journal Energies on the topic of Design and Control of Electrical Motor Drives published. Electrical motor drives are widely used in the industry, automation, transportation, and home appliances. Indeed, rolling mills, machine tools, high-speed trains, subway systems, elevators, electric vehicles, air conditioners, all depend on electrical motor drives.However, the production of effective and practical motors and drives requires flexibility in the regulation of current, torque, flux, acceleration, position, and speed. Without proper modeling, drive, and control, these motor drive systems cannot function effectively.To address these issues, we need to focus on the design, modeling, drive, and control of different types of motors, such as induction motors, permanent magnet synchronous motors, brushless DC motors, DC motors, synchronous reluctance motors, switched reluctance motors, flux-switching motors, linear motors, and step motors.Therefore, relevant research topics in this field of study include modeling electrical motor drives, both in transient and in steady-state, and designing control methods based on novel control strategies (e.g., PI controllers, fuzzy logic controllers, neural network controllers, predictive controllers, adaptive controllers, nonlinear controllers, etc.), with particular attention to transient responses, load disturbances, fault tolerance, and multi-motor drive techniques. This Special Issue include original contributions regarding recent developments and ideas in motor design, motor drive, and motor control. The topics include motor design, field-oriented control, torque control, reliability improvement, advanced controllers for motor drive systems, DSP-based sensorless motor drive systems, high-performance motor drive systems, high-efficiency motor drive systems, and practical applications of motor drive systems. I want to sincerely thank authors, reviewers, and staff members for their time and efforts. Prof. Dr. Tian-Hua Liu Guest Edito

    Design of One Dimensional Adjustment Platform Servo Control System Based on Neural Network

    Get PDF
    This paper designed a one dimensional adjustment of high precision servo control system, in order to provide individual comprehensive combat system high precision gun visual Angle. In servo control system hardware design based on DSP digital signal processing (DSP) chip as the CPU control circuit, in regard to algorithm, using the three layers BP neural network algorithm for PID integral gain and differential gain and intelligently adjusting proportion gain. On this basis, also analyzes the advantages and disadvantages of the traditional BP neural network algorithm, carries on the improvement. Vector using adaptive control, numerical optimization and introducing the steepness factor method, solve the contradiction between the stability and learning time, greatly improving the convergence speed and stability of the system performance, the static stability of the turntable accuracy is less than 3″, indicators reached the design requirements

    Data Mining Applications to Fault Diagnosis in Power Electronic Systems: A Systematic Review

    Get PDF

    Comparative evaluation of approaches in T.4.1-4.3 and working definition of adaptive module

    Get PDF
    The goal of this deliverable is two-fold: (1) to present and compare different approaches towards learning and encoding movements us- ing dynamical systems that have been developed by the AMARSi partners (in the past during the first 6 months of the project), and (2) to analyze their suitability to be used as adaptive modules, i.e. as building blocks for the complete architecture that will be devel- oped in the project. The document presents a total of eight approaches, in two groups: modules for discrete movements (i.e. with a clear goal where the movement stops) and for rhythmic movements (i.e. which exhibit periodicity). The basic formulation of each approach is presented together with some illustrative simulation results. Key character- istics such as the type of dynamical behavior, learning algorithm, generalization properties, stability analysis are then discussed for each approach. We then make a comparative analysis of the different approaches by comparing these characteristics and discussing their suitability for the AMARSi project

    A Self-Organizing Neural Model of Motor Equivalent Reaching and Tool Use by a Multijoint Arm

    Full text link
    This paper describes a self-organizing neural model for eye-hand coordination. Called the DIRECT model, it embodies a solution of the classical motor equivalence problem. Motor equivalence computations allow humans and other animals to flexibly employ an arm with more degrees of freedom than the space in which it moves to carry out spatially defined tasks under conditions that may require novel joint configurations. During a motor babbling phase, the model endogenously generates movement commands that activate the correlated visual, spatial, and motor information that are used to learn its internal coordinate transformations. After learning occurs, the model is capable of controlling reaching movements of the arm to prescribed spatial targets using many different combinations of joints. When allowed visual feedback, the model can automatically perform, without additional learning, reaches with tools of variable lengths, with clamped joints, with distortions of visual input by a prism, and with unexpected perturbations. These compensatory computations occur within a single accurate reaching movement. No corrective movements are needed. Blind reaches using internal feedback have also been simulated. The model achieves its competence by transforming visual information about target position and end effector position in 3-D space into a body-centered spatial representation of the direction in 3-D space that the end effector must move to contact the target. The spatial direction vector is adaptively transformed into a motor direction vector, which represents the joint rotations that move the end effector in the desired spatial direction from the present arm configuration. Properties of the model are compared with psychophysical data on human reaching movements, neurophysiological data on the tuning curves of neurons in the monkey motor cortex, and alternative models of movement control.National Science Foundation (IRI 90-24877); Office of Naval Research (N00014-92-J-1309); Air Force Office of Scientific Research (F49620-92-J-0499); National Science Foundation (IRI 90-24877

    Sequential fault detection for sealed deep groove ball bearings of in-wheel motor in variable operating conditions

    Get PDF
    Sealed deep groove ball bearings (SDGBBs) are employed to perform the relevant duties of in-wheel motor. However, the unique construction and complex operating environment of in-wheel motor may aggravate the occurrence of SDGBB faults. Therefore, this study presents a new intelligent diagnosis method for detecting SDGBB faults of in-wheel motor. The method is constructed on the basis of optimal composition of symptom parameters (SPOC) and support vector machines (SVMs). SPOC, as the objects of a follow-on process, is proposed to obtain from symptom parameters (SPs) of multi-direction. Moreover, the optimal hyper-plane of two states is automatically obtained using soft margin SVM and SPOC, and then using multi-SVMs, the system of intelligent diagnosis is built to detect many faults and identify fault types. The experiment results confirmed that the proposed method can excellently perform fault detection and fault-type identification for the SDGBB of in-wheel motor in variable operating conditions

    Síntesis de interpolación de los controladores para un sistema de accionamiento eléctrico multimotor que contiene un elemento enlazado elásticamente

    Get PDF
    Partial differential equations, integral, differential, or other equations describe multi-motor automatic electric drive systems containing elastic conveyor belts. Because of the elastic and distributive nature of the system parameters, the transfer function describing them is often a complex expression, containing not only the arguments as a linear system but also the inertial and transcendental components. This makes the precise control of tension and speed synchronously much more complicated than the centralized parameter system. A promising numerical solution based on the real interpolation method will simplify the procedure for synthesizing control loops while preserving the characteristic properties of objects with distributed parameters. The objective of the study is to propose a feasible solution for synthesizing the regulators based on the real interpolation method; it allows direct operation with the original transfer function containing the inertial and transcendental components. In this paper, we proposed an approach to synthesize the control system for objects with distributed parameters using the real interpolation method to reduce computational capacity and synthesis error while preserving the properties of this object class. Building an experimental model of the two-motor electric drive system containing an elastic conveyor to verify the effectiveness of the proposed algorithm. The simulation and experimental results indicate that the control system with the received regulators operating stably and meets the required quality criteria. It proves the efficiency of the synthesis algorithm based on the real interpolation method.Introducción: los sistemas de accionamiento eléctrico multimotor que incluyen transportadores elásticos son un ejemplo de sistemas típicos con parámetros distribuidos descritos por ecuaciones complejas. Debido a la naturaleza elástica y distributiva de los parámetros del sistema, la función de transferencia que los describe suele ser una expresión compleja que contiene los componentes inercial y trascendental. Problema: la naturaleza elástica y distributiva de los parámetros del sistema hace que el control preciso de la tensión y la velocidad sincrónicamente sea mucho más complicado que el sistema de parámetros centralizados. Metodología: se propone una solución numérica para sintetizar los reguladores basada en el método de interpolación real para reducir la capacidad computacional y el error de síntesis preservando las propiedades características de los objetos con parámetros distribuidos. Conclusión: la eficacia del algoritmo propuesto se verifica mediante un modelo experimental del sistema de accionamiento eléctrico de dos motores que contiene un transportador elástico. Los resultados de simulación y experimentales indican que el sistema de control con los reguladores recibidos opera de manera estable y cumple con los criterios de calidad requeridos. Originalidad: los resultados de la investigación se pueden aplicar en el desarrollo de sistemas centrales de control y monitoreo para líneas de producción automáticas con sistemas de accionamiento multimotor que incluyen transportadores

    Advances in the Field of Electrical Machines and Drives

    Get PDF
    Electrical machines and drives dominate our everyday lives. This is due to their numerous applications in industry, power production, home appliances, and transportation systems such as electric and hybrid electric vehicles, ships, and aircrafts. Their development follows rapid advances in science, engineering, and technology. Researchers around the world are extensively investigating electrical machines and drives because of their reliability, efficiency, performance, and fault-tolerant structure. In particular, there is a focus on the importance of utilizing these new trends in technology for energy saving and reducing greenhouse gas emissions. This Special Issue will provide the platform for researchers to present their recent work on advances in the field of electrical machines and drives, including special machines and their applications; new materials, including the insulation of electrical machines; new trends in diagnostics and condition monitoring; power electronics, control schemes, and algorithms for electrical drives; new topologies; and innovative applications
    corecore