14,645 research outputs found

    Estimating Uncertainty of Bus Arrival Times and Passenger Occupancies

    Get PDF
    Travel time reliability and the availability of seating and boarding space are important indicators of bus service quality and strongly influence users’ satisfaction and attitudes towards bus transit systems. With Automated Vehicle Location (AVL) and Automated Passenger Counter (APC) units becoming common on buses, some agencies have begun to provide real-time bus location and passenger occupancy information as a means to improve perceived transit reliability. Travel time prediction models have also been established based on AVL and APC data. However, existing travel time prediction models fail to provide an indication of the uncertainty associated with these estimates. This can cause a false sense of precision, which can lead to experiences associated with unreliable service. Furthermore, no existing models are available to predict individual bus occupancies at downstream stops to help travelers understand if there will be space available to board. The purpose of this project was to develop modeling frameworks to predict travel times (and associated uncertainties) as well as individual bus passenger occupancies. For travel times, accelerated failure-time survival models were used to predict the entire distribution of travel times expected. The survival models were found to be just as accurate as models developed using traditional linear regression techniques. However, the survival models were found to have smaller variances associated with predictions. For passenger occupancies, linear and count regression models were compared. The linear regression models were found to outperform count regression models, perhaps due to the additive nature of the passenger boarding process. Various modeling frameworks were tested and the best frameworks were identified for predictions at near stops (within five stops downstream) and far stops (further than eight stops). Overall, these results can be integrated into existing real-time transit information systems to improve the quality of information provided to passengers

    Inferring transportation modes from GPS trajectories using a convolutional neural network

    Full text link
    Identifying the distribution of users' transportation modes is an essential part of travel demand analysis and transportation planning. With the advent of ubiquitous GPS-enabled devices (e.g., a smartphone), a cost-effective approach for inferring commuters' mobility mode(s) is to leverage their GPS trajectories. A majority of studies have proposed mode inference models based on hand-crafted features and traditional machine learning algorithms. However, manual features engender some major drawbacks including vulnerability to traffic and environmental conditions as well as possessing human's bias in creating efficient features. One way to overcome these issues is by utilizing Convolutional Neural Network (CNN) schemes that are capable of automatically driving high-level features from the raw input. Accordingly, in this paper, we take advantage of CNN architectures so as to predict travel modes based on only raw GPS trajectories, where the modes are labeled as walk, bike, bus, driving, and train. Our key contribution is designing the layout of the CNN's input layer in such a way that not only is adaptable with the CNN schemes but represents fundamental motion characteristics of a moving object including speed, acceleration, jerk, and bearing rate. Furthermore, we ameliorate the quality of GPS logs through several data preprocessing steps. Using the clean input layer, a variety of CNN configurations are evaluated to achieve the best CNN architecture. The highest accuracy of 84.8% has been achieved through the ensemble of the best CNN configuration. In this research, we contrast our methodology with traditional machine learning algorithms as well as the seminal and most related studies to demonstrate the superiority of our framework.Comment: 12 pages, 3 figures, 7 tables, Transportation Research Part C: Emerging Technologie

    Big data analytics:Computational intelligence techniques and application areas

    Get PDF
    Big Data has significant impact in developing functional smart cities and supporting modern societies. In this paper, we investigate the importance of Big Data in modern life and economy, and discuss challenges arising from Big Data utilization. Different computational intelligence techniques have been considered as tools for Big Data analytics. We also explore the powerful combination of Big Data and Computational Intelligence (CI) and identify a number of areas, where novel applications in real world smart city problems can be developed by utilizing these powerful tools and techniques. We present a case study for intelligent transportation in the context of a smart city, and a novel data modelling methodology based on a biologically inspired universal generative modelling approach called Hierarchical Spatial-Temporal State Machine (HSTSM). We further discuss various implications of policy, protection, valuation and commercialization related to Big Data, its applications and deployment
    • …
    corecore