181 research outputs found

    Artificial Intelligence based Anomaly Detection of Energy Consumption in Buildings: A Review, Current Trends and New Perspectives

    Get PDF
    Enormous amounts of data are being produced everyday by sub-meters and smart sensors installed in residential buildings. If leveraged properly, that data could assist end-users, energy producers and utility companies in detecting anomalous power consumption and understanding the causes of each anomaly. Therefore, anomaly detection could stop a minor problem becoming overwhelming. Moreover, it will aid in better decision-making to reduce wasted energy and promote sustainable and energy efficient behavior. In this regard, this paper is an in-depth review of existing anomaly detection frameworks for building energy consumption based on artificial intelligence. Specifically, an extensive survey is presented, in which a comprehensive taxonomy is introduced to classify existing algorithms based on different modules and parameters adopted, such as machine learning algorithms, feature extraction approaches, anomaly detection levels, computing platforms and application scenarios. To the best of the authors' knowledge, this is the first review article that discusses anomaly detection in building energy consumption. Moving forward, important findings along with domain-specific problems, difficulties and challenges that remain unresolved are thoroughly discussed, including the absence of: (i) precise definitions of anomalous power consumption, (ii) annotated datasets, (iii) unified metrics to assess the performance of existing solutions, (iv) platforms for reproducibility and (v) privacy-preservation. Following, insights about current research trends are discussed to widen the applications and effectiveness of the anomaly detection technology before deriving future directions attracting significant attention. This article serves as a comprehensive reference to understand the current technological progress in anomaly detection of energy consumption based on artificial intelligence.Comment: 11 Figures, 3 Table

    An ensemble model for predictive energy performance:Closing the gap between actual and predicted energy use in residential buildings

    Get PDF
    The design stage of a building plays a pivotal role in influencing its life cycle and overall performance. Accurate predictions of a building's performance are crucial for informed decision-making, particularly in terms of energy performance, given the escalating global awareness of climate change and the imperative to enhance energy efficiency in buildings. However, a well-documented energy performance gap persists between actual and predicted energy consumption, primarily attributed to the unpredictable nature of occupant behavior.Existing methodologies for predicting and simulating occupant behavior in buildings frequently neglect or exclusively concentrate on particular behaviors, resulting in uncertainties in energy performance predictions. Machine learning approaches have exhibited increased accuracy in predicting occupant energy behavior, yet the majority of extant studies focus on specific behavior types rather than investigating the interactions among all contributing factors. This dissertation delves into the building energy performance gap, with a particular emphasis on the influence of occupants on energy performance. A comprehensive literature review scrutinizes machine learning models employed for predicting occupants' behavior in buildings and assesses their performance. The review uncovers knowledge gaps, as most studies are case-specific and lack a consolidated database to examine diverse behaviors across various building types.An ensemble model integrating occupant behavior parameters is devised to enhance the accuracy of energy performance predictions in residential buildings. Multiple algorithms are examined, with the selection of algorithms contingent upon evaluation metrics. The ensemble model is validated through a case study that compares actual energy consumption with the predictions of the ensemble model and an EnergyPlus simulation that takes occupant behavior factors into account.The findings demonstrate that the ensemble model provides considerably more accurate predictions of actual energy consumption compared to the EnergyPlus simulation. This dissertation also addresses the research limitations, including the reusability of the model and the requirement for additional datasets to bolster confidence in the model's applicability across diverse building types and occupant behavior patterns.In summary, this dissertation presents an ensemble model that endeavors to bridge the gap between actual and predicted energy usage in residential buildings by incorporating occupant behavior parameters, leading to more precise energy performance predictions and promoting superior energy management strategies

    Implementation of non-intrusive appliances load monitoring (NIALM) on k-nearest neighbors (k-NN) classifier

    Get PDF
    Nonintrusive Appliance Load Monitoring (NIALM) is used to analyze individual’s house energy consumption by distinguishing variations in voltage and current of appliances in a household. The method identifies load consumption of each appliance from the aggregated home energy consumption. NIALM will also provide information of load consumptions of each appliance by indirectly detecting the abnormal changes of appliance usage. The proposed NIALM approach is based on features extraction from load consumptions measurements of electrical power signals in order to classify appliance’s state of operation. In this work, we have improved the identification accuracy and the detection of appliances based on their operational state by employing Machine Learning (ML) technique; namely k-nearest neighbor (k-NN) classification algorithm. The dataset used to perform this process is from the publicly available (PLAID) of power, voltage and current signals of appliances from several houses. This is used as benchmark data set. The PLAID dataset is collected and processed for each appliance and our classification results based on k-NN algorithm achieved high accuracy and is able to gain cost-effective solution. In addition, the result shows that k-NN classifier is a proven as an efficient method for NIALM techniques when compared with other proposed different ML options. Based on the used dataset, the average F-score measure obtained using the k-NN classifier is 90%. Possible reasons behind these findings are discussed and areas for further exploration are proposed.</p

    Design of ensemble forecasting models for home energy management systems

    Get PDF
    The increasing levels of energy consumption worldwide is raising issues with respect to surpassing supply limits, causing severe effects on the environment, and the exhaustion of energy resources. Buildings are one of the most relevant sectors in terms of energy consumption; as such, efficient Home or Building Management Systems are an important topic of research. This study discusses the use of ensemble techniques in order to improve the performance of artificial neural networks models used for energy forecasting in residential houses. The case study is a residential house, located in Portugal, that is equipped with PV generation and battery storage and controlled by a Home Energy Management System (HEMS). It has been shown that the ensemble forecasting results are superior to single selected models, which were already excellent. A simple procedure was proposed for selecting the models to be used in the ensemble, together with a heuristic to determine the number of models.info:eu-repo/semantics/publishedVersio

    Energy Data Analytics for Smart Meter Data

    Get PDF
    The principal advantage of smart electricity meters is their ability to transfer digitized electricity consumption data to remote processing systems. The data collected by these devices make the realization of many novel use cases possible, providing benefits to electricity providers and customers alike. This book includes 14 research articles that explore and exploit the information content of smart meter data, and provides insights into the realization of new digital solutions and services that support the transition towards a sustainable energy system. This volume has been edited by Andreas Reinhardt, head of the Energy Informatics research group at Technische UniversitÀt Clausthal, Germany, and Lucas Pereira, research fellow at Técnico Lisboa, Portugal

    Machine learning techniques for sensor-based household activity recognition and forecasting

    Get PDF
    Thanks to the recent development of cheap and unobtrusive smart-home sensors, ambient assisted living tools promise to offer innovative solutions to support the users in carrying out their everyday activities in a smoother and more sustainable way. To be effective, these solutions need to constantly monitor and forecast the activities of daily living carried out by the inhabitants. The Machine Learning field has seen significant advancements in the development of new techniques, especially regarding deep learning algorithms. Such techniques can be successfully applied to household activity signal data to benefit the user in several applications. This thesis therefore aims to produce a contribution that artificial intelligence can make in the field of activity recognition and energy consumption. The effective recognition of common actions or the use of high-consumption appliances would lead to user profiling, thus enabling the optimisation of energy consumption in favour of the user himself or the energy community in general. Avoiding wasting electricity and optimising its consumption is one of the main objectives of the community. This work is therefore intended as a forerunner for future studies that will allow, through the results in this thesis, the creation of increasingly intelligent systems capable of making the best use of the user's resources for everyday life actions. Namely, this thesis focuses on signals from sensors installed in a house: data from position sensors, door sensors, smartphones or smart meters, and investigates the use of advanced machine learning algorithms to recognize and forecast inhabitant activities, including the use of appliances and the power consumption. The thesis is structured into four main chapters, each of which represents a contribution regarding Machine Learning or Deep Learning techniques for addressing challenges related to the aforementioned data from different sources. The first contribution highlights the importance of exploiting dimensionality reduction techniques that can simplify a Machine Learning model and increase its efficiency by identifying and retaining only the most informative and predictive features for activity recognition. In more detail, it is presented an extensive experimental study involving several feature selection algorithms and multiple Human Activity Recognition benchmarks containing mobile sensor data. In the second contribution, we propose a machine learning approach to forecast future energy consumption considering not only past consumption data, but also context data such as inhabitants’ actions and activities, use of household appliances, interaction with furniture and doors, and environmental data. We performed an experimental evaluation with real-world data acquired in an instrumented environment from a large user group. Finally, the last two contributions address the Non-Intrusive-Load-Monitoring problem. In one case, the aim is to identify the operating state (on/off) and the precise energy consumption of individual electrical loads, considering only the aggregate consumption of these loads as input. We use a Deep Learning method to disaggregate the low-frequency energy signal generated directly by the new generation smart meters being deployed in Italy, without the need for additional specific hardware. In the other case, driven by the need to build intelligent non-intrusive algorithms for disaggregating electrical signals, the work aims to recognize which appliance is activated by analyzing energy measurements and classifying appliances through Machine Learning techniques. Namely, we present a new way of approaching the problem by unifying Single Label (single active appliance recognition) and Multi Label (multiple active appliance recognition) learning paradigms. This combined approach, supplemented with an event detector, which suggests the instants of activation, would allow the development of an end-to-end NILM approach

    New Appliance Detection for Nonintrusive Load Monitoring

    Get PDF
    © 2019 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works

    A systematic literature review on the use of artificial intelligence in energy self-management in smart buildings

    Get PDF
    Buildings are one of the main consumers of energy in cities, which is why a lot of research has been generated around this problem. Especially, the buildings energy management systems must improve in the next years. Artificial intelligence techniques are playing and will play a fundamental role in these improvements. This work presents a systematic review of the literature on researches that have been done in recent years to improve energy management systems for smart building using artificial intelligence techniques. An originality of the work is that they are grouped according to the concept of "Autonomous Cycles of Data Analysis Tasks", which defines that an autonomous management system requires specialized tasks, such as monitoring, analysis, and decision-making tasks for reaching objectives in the environment, like improve the energy efficiency. This organization of the work allows us to establish not only the positioning of the researches, but also, the visualization of the current challenges and opportunities in each domain. We have identified that many types of researches are in the domain of decision-making (a large majority on optimization and control tasks), and defined potential projects related to the development of autonomous cycles of data analysis tasks, feature engineering, or multi-agent systems, among others.European Commissio

    Intelligent Decision Support System for Energy Management in Demand Response Programs and Residential and Industrial Sectors of the Smart Grid

    Get PDF
    This PhD thesis addresses the complexity of the energy efficiency control problem in residential and industrial customers of Smart electrical Grid, and examines the main factors that affect energy demand, and proposes an intelligent decision support system for applications of demand response. A multi criteria decision making algorithm is combined with a combinatorial optimization technique to assist energy managers to decide whether to participate in demand response programs or obtain energy from distributed energy resources
    • 

    corecore