1,751 research outputs found

    Probabilistic Graphical Models for ERP-Based Brain Computer Interfaces

    Get PDF
    An event related potential (ERP) is an electrical potential recorded from the nervous system of humans or other animals. An ERP is observed after the presentation of a stimulus. Some examples of the ERPs are P300, N400, among others. Although ERPs are used very often in neuroscience, its generation is not yet well understood and different theories have been proposed to explain the phenomena. ERPs could be generated due to changes in the alpha rhythm, an internal neural control that reset the ongoing oscillations in the brain, or separate and distinct additive neuronal phenomena. When different repetitions of the same stimuli are averaged, a coherence addition of the oscillations is obtained which explain the increase in amplitude in the signals. Two ERPs are mostly studied: N400 and P300. N400 signals arise when a subject tries to make semantic operations that support neural circuits for explicit memory. N400 potentials have been observed mostly in the rhinal cortex. P300 signals are related to attention and memory operations. When a new stimulus appears, a P300 ERP (named P3a) is generated in the frontal lobe. In contrast, when a subject perceives an expected stimulus, a P300 ERP (named P3b) is generated in the temporal – parietal areas. This implicates P3a and P3b are related, suggesting a circuit pathway between the frontal and temporal–parietal regions, whose existence has not been verified. Un potencial relacionado con un evento (ERP) es un potencial eléctrico registrado en el sistema nervioso de los seres humanos u otros animales. Un ERP se observa tras la presentación de un estímulo. Aunque los ERPs se utilizan muy a menudo en neurociencia, su generación aún no se entiende bien y se han propuesto diferentes teorías para explicar el fenómeno. Una interfaz cerebro-computador (BCI) es un sistema de comunicación en el que los mensajes o las órdenes que un sujeto envía al mundo exterior proceden de algunas señales cerebrales en lugar de los nervios y músculos periféricos. La BCI utiliza ritmos sensorimotores o señales ERP, por lo que se necesita un clasificador para distinguir entre los estímulos correctos y los incorrectos. En este trabajo, proponemos utilizar modelos probabilísticos gráficos para el modelado de la dinámica temporal y espacial de las señales cerebrales con aplicaciones a las BCIs. Los modelos gráficos han sido seleccionados por su flexibilidad y capacidad de incorporar información previa. Esta flexibilidad se ha utilizado anteriormente para modelar únicamente la dinámica temporal. Esperamos que el modelo refleje algunos aspectos del funcionamiento del cerebro relacionados con los ERPs, al incluir información espacial y temporal.DoctoradoDoctor en Ingeniería Eléctrica y Electrónic

    A review on brain computer interfaces: contemporary achievements and future goals towards movement restoration

    Get PDF
    Restoration of motor functions of patients with loss of mobility constitutes a yet unsolved medical problem, but also one of the most prominent research areas of neurosciences. Among suggested solutions, Brain Computer Interfaces have received much attention. BCI systems use electric, magnetic or metabolic brain signals to allow for control of external devices, such as wheelchairs, computers or neuroprosthetics, by disabled patients. Clinical applications includespinal cord injury, cerebrovascular accident rehabilitation, Amyotrophic Lateral Sclerosis patients. Various BCI systems are under re­search, facilitated by numerous measurement techniques including EEG, fMRI, MEG, nIRS and ECoG, each with its own advantages and disadvantages.Current research effort focuses on brain signal identification and extraction. Virtual Reality environments are also deployed for patient training. Wheelchair or robotic arm control has showed up as the first step towards actual mobility restoration. The next era of BCI research is envisaged to lie along the transmission of brain signals to systems that will control and restore movement of disabled patients via mechanical appendixes or directly to the muscle system by neurosurgical means

    Study of Adaptation Methods Towards Advanced Brain-computer Interfaces

    Get PDF
    Ph.DDOCTOR OF PHILOSOPH

    Data-Driven Transducer Design and Identification for Internally-Paced Motor Brain Computer Interfaces: A Review

    Get PDF
    Brain-Computer Interfaces (BCIs) are systems that establish a direct communication pathway between the users' brain activity and external effectors. They offer the potential to improve the quality of life of motor-impaired patients. Motor BCIs aim to permit severely motor-impaired users to regain limb mobility by controlling orthoses or prostheses. In particular, motor BCI systems benefit patients if the decoded actions reflect the users' intentions with an accuracy that enables them to efficiently interact with their environment. One of the main challenges of BCI systems is to adapt the BCI's signal translation blocks to the user to reach a high decoding accuracy. This paper will review the literature of data-driven and user-specific transducer design and identification approaches and it focuses on internally-paced motor BCIs. In particular, continuous kinematic biomimetic and mental-task decoders are reviewed. Furthermore, static and dynamic decoding approaches, linear and non-linear decoding, offline and real-time identification algorithms are considered. The current progress and challenges related to the design of clinical-compatible motor BCI transducers are additionally discussed

    A Local Neural Classifier for the Recognition of EEG Patterns Associated to Mental Tasks

    Get PDF
    This paper proposes a novel and simple local neural classifier for the recognition of mental tasks from on-line spontaneous EEG signals. The proposed neural classifier recognizes three mental tasks from on-line spontaneousEEGsignals. Correct recognition is around 70%. This modest rate is largely compensated by two properties, namely low percentage of wrong decisions (below 5%) and rapid responses (every 1/2 s). Interestingly, the neural classifier achieves this performance with a few units, normally just one per mental task. Also, since the subject and his/her personal interface learn simultaneously from each other, subjects master it rapidly (in a few days of moderate training). Finally, analysis of learned EEG patterns confirms that for a subject to operate satisfactorily a brain interface, the latter must fit the individual features of the former

    Determining States of Movement in Humans Using Minimally Processed EEG Signals and Various Classification Methods

    Get PDF
    Electroencephalography (EEG) is a non-invasive technique used in both clinical and research settings to record neuronal signaling in the brain. The location of an EEG signal as well as the frequencies at which its neuronal constituents fire correlate with behavioral tasks, including discrete states of motor activity. Due to the number of channels and fine temporal resolution of EEG, a dense, high-dimensional dataset is collected. Transcranial direct current stimulation (tDCS) is a treatment that has been suggested to improve motor functions of Parkinson’s disease and chronic stroke patients when stimulation occurs during a motor task. tDCS is commonly administered without taking biofeedback such as brain state into account. Additionally, the administration of tDCS by a technician during motor tasks is a tiresome process. Machine learning and deep learning algorithms are often used to perform classification tasks on high-dimensional data, and have been successfully used to classify movement states based on EEG features. In this thesis, a program capable of performing live classification of motor state using machine learning and EEG as biofeedback is proposed. This program would allow for the development of a device that optimally administers tDCS dosage during motor tasks. This is achieved by surveying the literature for motor classification techniques based on EEG signals, recreating the methods in the surveyed literature, measuring their accuracy, and creating an application to perform online capturing and analysis of EEG recordings using the classifier with the highest accuracy to demonstrate the feasibility of real-time classification. The highest accuracy of motor classification is achieved by training a random forest on binned spectral decomposition from a normalized signal. While live classification was successfully performed, accuracy was limited by external changes to the recording environment, skewing the input to the trained model
    corecore