12,810 research outputs found

    LID-senone Extraction via Deep Neural Networks for End-to-End Language Identification

    Get PDF
    A key problem in spoken language identification (LID) is how to effectively model features from a given speech utterance. Recent techniques such as end-to-end schemes and deep neural networks (DNNs) utilising transfer learning such as bottleneck (BN) features, have demonstrated good overall performance, but have not addressed the extraction of LID-specific features. We thus propose a novel end-to-end neural network which aims to obtain effective LID-senone representations, which we define as being analogous to senones in speech recognition. We show that LID-senones combine a compact representation of the original acoustic feature space with a powerful descriptive and discriminative capability. Furthermore, a novel incremental training method is proposed to extract the weak language information buried in the acoustic features of insufficient language resources. Results on the six most confused languages in NIST LRE 2009 show good performance compared to state-of-the-art BN-GMM/i-vector and BN-DNN/i-vector systems. The proposed end-to-end network, coupled with an incremental training method which mitigates against over-fitting, has potential not just for LID, but also for other resource constrained tasks

    Improved language identification using deep bottleneck network

    Get PDF
    Effective representation plays an important role in automatic spoken language identification (LID). Recently, several representations that employ a pre-trained deep neural network (DNN) as the front-end feature extractor, have achieved state-of-the-art performance. However the performance is still far from satisfactory for dialect and short-duration utterance identification tasks, due to the deficiency of existing representations. To address this issue, this paper proposes the improved representations to exploit the information extracted from different layers of the DNN structure. This is conceptually motivated by regarding the DNN as a bridge between low-level acoustic input and high-level phonetic output features. Specifically, we employ deep bottleneck network (DBN), a DNN with an internal bottleneck layer acting as a feature extractor. We extract representations from two layers of this single network, i.e. DBN-TopLayer and DBN-MidLayer. Evaluations on the NIST LRE2009 dataset, as well as the more specific dialect recognition task, show that each representation can achieve an incremental performance gain. Furthermore, a simple fusion of the representations is shown to exceed current state-of-the-art performance

    Exploring the Encoding Layer and Loss Function in End-to-End Speaker and Language Recognition System

    Full text link
    In this paper, we explore the encoding/pooling layer and loss function in the end-to-end speaker and language recognition system. First, a unified and interpretable end-to-end system for both speaker and language recognition is developed. It accepts variable-length input and produces an utterance level result. In the end-to-end system, the encoding layer plays a role in aggregating the variable-length input sequence into an utterance level representation. Besides the basic temporal average pooling, we introduce a self-attentive pooling layer and a learnable dictionary encoding layer to get the utterance level representation. In terms of loss function for open-set speaker verification, to get more discriminative speaker embedding, center loss and angular softmax loss is introduced in the end-to-end system. Experimental results on Voxceleb and NIST LRE 07 datasets show that the performance of end-to-end learning system could be significantly improved by the proposed encoding layer and loss function.Comment: Accepted for Speaker Odyssey 201
    • …
    corecore