284 research outputs found

    Improving Energy Efficiency through Data-Driven Modeling, Simulation and Optimization

    Get PDF
    In October 2014, the EU leaders agreed upon three key targets for the year 2030: a reduction by at least 40% in greenhouse gas emissions, savings of at least 27% for renewable energy, and improvements by at least 27% in energy efficiency. The increase in computational power combined with advanced modeling and simulation tools makes it possible to derive new technological solutions that can enhance the energy efficiency of systems and that can reduce the ecological footprint. This book compiles 10 novel research works from a Special Issue that was focused on data-driven approaches, machine learning, or artificial intelligence for the modeling, simulation, and optimization of energy systems

    Advances in Condition Monitoring, Optimization and Control for Complex Industrial Processes

    Get PDF
    The book documents 25 papers collected from the Special Issue “Advances in Condition Monitoring, Optimization and Control for Complex Industrial Processes”, highlighting recent research trends in complex industrial processes. The book aims to stimulate the research field and be of benefit to readers from both academic institutes and industrial sectors

    Applied Metaheuristic Computing

    Get PDF
    For decades, Applied Metaheuristic Computing (AMC) has been a prevailing optimization technique for tackling perplexing engineering and business problems, such as scheduling, routing, ordering, bin packing, assignment, facility layout planning, among others. This is partly because the classic exact methods are constrained with prior assumptions, and partly due to the heuristics being problem-dependent and lacking generalization. AMC, on the contrary, guides the course of low-level heuristics to search beyond the local optimality, which impairs the capability of traditional computation methods. This topic series has collected quality papers proposing cutting-edge methodology and innovative applications which drive the advances of AMC

    Synthesizing multi-layer perceptron network with ant lion biogeography-based dragonfly algorithm evolutionary strategy invasive weed and league champion optimization hybrid algorithms in predicting heating load in residential buildings

    Get PDF
    The significance of accurate heating load (HL) approximation is the primary motivation of this research to distinguish the most efficient predictive model among several neural-metaheuristic models. The proposed models are formulated through synthesizing a multi-layer perceptron network (MLP) with ant lion optimization (ALO), biogeography-based optimization (BBO), the dragonfly algorithm (DA), evolutionary strategy (ES), invasive weed optimization (IWO), and league champion optimization (LCA) hybrid algorithms. Each ensemble is optimized in terms of the operating population. Accordingly, the ALO-MLP, BBO-MLP, DA-MLP, ES-MLP, IWO-MLP, and LCA-MLP presented their best performance for population sizes of 350, 400, 200, 500, 50, and 300, respectively. The comparison was carried out by implementing a ranking system. Based on the obtained overall scores (OSs), the BBO (OS = 36) featured as the most capable optimization technique, followed by ALO (OS = 27) and ES (OS = 20). Due to the efficient performance of these algorithms, the corresponding MLPs can be promising substitutes for traditional methods used for HL analysis

    Mining Safety and Sustainability I

    Get PDF
    Safety and sustainability are becoming ever bigger challenges for the mining industry with the increasing depth of mining. It is of great significance to reduce the disaster risk of mining accidents, enhance the safety of mining operations, and improve the efficiency and sustainability of development of mineral resource. This book provides a platform to present new research and recent advances in the safety and sustainability of mining. More specifically, Mining Safety and Sustainability presents recent theoretical and experimental studies with a focus on safety mining, green mining, intelligent mining and mines, sustainable development, risk management of mines, ecological restoration of mines, mining methods and technologies, and damage monitoring and prediction. It will be further helpful to provide theoretical support and technical support for guiding the normative, green, safe, and sustainable development of the mining industry

    Applied Methuerstic computing

    Get PDF
    For decades, Applied Metaheuristic Computing (AMC) has been a prevailing optimization technique for tackling perplexing engineering and business problems, such as scheduling, routing, ordering, bin packing, assignment, facility layout planning, among others. This is partly because the classic exact methods are constrained with prior assumptions, and partly due to the heuristics being problem-dependent and lacking generalization. AMC, on the contrary, guides the course of low-level heuristics to search beyond the local optimality, which impairs the capability of traditional computation methods. This topic series has collected quality papers proposing cutting-edge methodology and innovative applications which drive the advances of AMC

    A Prediction Modeling Framework For Noisy Welding Quality Data

    Get PDF
    Numerous and various research projects have been conducted to utilize historical manufacturing process data in product design. These manufacturing process data often contain data inconsistencies, and it causes challenges in extracting useful information from the data. In resistance spot welding (RSW), data inconsistency is a well-known issue. In general, such inconsistent data are treated as noise data and removed from the original dataset before conducting analyses or constructing prediction models. This may not be desirable for every design and manufacturing applications since every data can contain important information to further explain the process. In this research, we propose a prediction modeling framework, which employs bootstrap aggregating (bagging) with support vector regression (SVR) as the base learning algorithm to improve the prediction accuracy on such noisy data. Optimal hyper-parameters for SVR are selected by particle swarm optimization (PSO) with meta-modeling. Constructing bagging models require 114 more computational costs than a single model. Also, evolutionary computation algorithms, such as PSO, generally require a large number of candidate solution evaluations to achieve quality solutions. These two requirements greatly increase the overall computational cost in constructing effective bagging SVR models. Meta-modeling can be employed to reduce the computational cost when the fitness or constraints functions are associated with computationally expensive tasks or analyses. In our case, the objective function is associated with constructing bagging SVR models with candidate sets of hyper-parameters. Therefore, in regards to PSO, a large number of bagging SVR models have to be constructed and evaluated, which is computationally expensive. The meta-modeling approach, called MUGPSO, developed in this research assists PSO in evaluating these candidate solutions (i.e., sets of hyper-parameters). MUGPSO approximates the fitness function of candidate solutions. Through this method, the numbers of real fitness function evaluations (i.e., constructing bagging SVR models) are reduced, which also reduces the overall computational costs. Using the Meta2 framework, one can expect an improvement in the prediction accuracy with reduced computational time. Experiments are conducted on three artificially generated noisy datasets and a real RSW quality dataset. The results indicate that Meta2 is capable of providing promising solutions with noticeably reduced computational costs

    Distributed energy resources and the application of AI, IoT, and blockchain in smart grids

    Get PDF
    Smart grid (SG), an evolving concept in the modern power infrastructure, enables the two-way flow of electricity and data between the peers within the electricity system networks (ESN) and its clusters. The self-healing capabilities of SG allow the peers to become active partakers in ESN. In general, the SG is intended to replace the fossil fuel-rich conventional grid with the distributed energy resources (DER) and pools numerous existing and emerging know-hows like information and digital communications technologies together to manage countless operations. With this, the SG will able to “detect, react, and pro-act” to changes in usage and address multiple issues, thereby ensuring timely grid operations. However, the “detect, react, and pro-act” features in DER-based SG can only be accomplished at the fullest level with the use of technologies like Artificial Intelligence (AI), the Internet of Things (IoT), and the Blockchain (BC). The techniques associated with AI include fuzzy logic, knowledge-based systems, and neural networks. They have brought advances in controlling DER-based SG. The IoT and BC have also enabled various services like data sensing, data storage, secured, transparent, and traceable digital transactions among ESN peers and its clusters. These promising technologies have gone through fast technological evolution in the past decade, and their applications have increased rapidly in ESN. Hence, this study discusses the SG and applications of AI, IoT, and BC. First, a comprehensive survey of the DER, power electronics components and their control, electric vehicles (EVs) as load components, and communication and cybersecurity issues are carried out. Second, the role played by AI-based analytics, IoT components along with energy internet architecture, and the BC assistance in improving SG services are thoroughly discussed. This study revealed that AI, IoT, and BC provide automated services to peers by monitoring real-time information about the ESN, thereby enhancing reliability, availability, resilience, stability, security, and sustainability
    • …
    corecore