28,510 research outputs found

    Diagonal Based Feature Extraction for Handwritten Alphabets Recognition System using Neural Network

    Full text link
    An off-line handwritten alphabetical character recognition system using multilayer feed forward neural network is described in the paper. A new method, called, diagonal based feature extraction is introduced for extracting the features of the handwritten alphabets. Fifty data sets, each containing 26 alphabets written by various people, are used for training the neural network and 570 different handwritten alphabetical characters are used for testing. The proposed recognition system performs quite well yielding higher levels of recognition accuracy compared to the systems employing the conventional horizontal and vertical methods of feature extraction. This system will be suitable for converting handwritten documents into structural text form and recognizing handwritten names

    ANN-based Innovative Segmentation Method for Handwritten text in Assamese

    Get PDF
    Artificial Neural Network (ANN) s has widely been used for recognition of optically scanned character, which partially emulates human thinking in the domain of the Artificial Intelligence. But prior to recognition, it is necessary to segment the character from the text to sentences, words etc. Segmentation of words into individual letters has been one of the major problems in handwriting recognition. Despite several successful works all over the work, development of such tools in specific languages is still an ongoing process especially in the Indian context. This work explores the application of ANN as an aid to segmentation of handwritten characters in Assamese- an important language in the North Eastern part of India. The work explores the performance difference obtained in applying an ANN-based dynamic segmentation algorithm compared to projection- based static segmentation. The algorithm involves, first training of an ANN with individual handwritten characters recorded from different individuals. Handwritten sentences are separated out from text using a static segmentation method. From the segmented line, individual characters are separated out by first over segmenting the entire line. Each of the segments thus obtained, next, is fed to the trained ANN. The point of segmentation at which the ANN recognizes a segment or a combination of several segments to be similar to a handwritten character, a segmentation boundary for the character is assumed to exist and segmentation performed. The segmented character is next compared to the best available match and the segmentation boundary confirmed

    Design of automatic vision-based inspection system for solder joint segmentation

    Get PDF
    Purpose: Computer vision has been widely used in the inspection of electronic components. This paper proposes a computer vision system for the automatic detection, localisation, and segmentation of solder joints on Printed Circuit Boards (PCBs) under different illumination conditions. Design/methodology/approach: An illumination normalization approach is applied to an image, which can effectively and efficiently eliminate the effect of uneven illumination while keeping the properties of the processed image the same as in the corresponding image under normal lighting conditions. Consequently special lighting and instrumental setup can be reduced in order to detect solder joints. These normalised images are insensitive to illumination variations and are used for the subsequent solder joint detection stages. In the segmentation approach, the PCB image is transformed from an RGB color space to a YIQ color space for the effective detection of solder joints from the background. Findings: The segmentation results show that the proposed approach improves the performance significantly for images under varying illumination conditions. Research limitations/implications: This paper proposes a front-end system for the automatic detection, localisation, and segmentation of solder joint defects. Further research is required to complete the full system including the classification of solder joint defects. Practical implications: The methodology presented in this paper can be an effective method to reduce cost and improve quality in production of PCBs in the manufacturing industry. Originality/value: This research proposes the automatic location, identification and segmentation of solder joints under different illumination conditions

    Real-time Semantic Segmentation of Crop and Weed for Precision Agriculture Robots Leveraging Background Knowledge in CNNs

    Full text link
    Precision farming robots, which target to reduce the amount of herbicides that need to be brought out in the fields, must have the ability to identify crops and weeds in real time to trigger weeding actions. In this paper, we address the problem of CNN-based semantic segmentation of crop fields separating sugar beet plants, weeds, and background solely based on RGB data. We propose a CNN that exploits existing vegetation indexes and provides a classification in real time. Furthermore, it can be effectively re-trained to so far unseen fields with a comparably small amount of training data. We implemented and thoroughly evaluated our system on a real agricultural robot operating in different fields in Germany and Switzerland. The results show that our system generalizes well, can operate at around 20Hz, and is suitable for online operation in the fields.Comment: Accepted for publication at IEEE International Conference on Robotics and Automation 2018 (ICRA 2018
    corecore