16,745 research outputs found

    BowTie - A deep learning feedforward neural network for sentiment analysis

    Full text link
    How to model and encode the semantics of human-written text and select the type of neural network to process it are not settled issues in sentiment analysis. Accuracy and transferability are critical issues in machine learning in general. These properties are closely related to the loss estimates for the trained model. I present a computationally-efficient and accurate feedforward neural network for sentiment prediction capable of maintaining low losses. When coupled with an effective semantics model of the text, it provides highly accurate models with low losses. Experimental results on representative benchmark datasets and comparisons to other methods show the advantages of the new approach.Comment: 12 pages, 7 figures, 4 table

    Predicting the Quality of Short Narratives from Social Media

    Full text link
    An important and difficult challenge in building computational models for narratives is the automatic evaluation of narrative quality. Quality evaluation connects narrative understanding and generation as generation systems need to evaluate their own products. To circumvent difficulties in acquiring annotations, we employ upvotes in social media as an approximate measure for story quality. We collected 54,484 answers from a crowd-powered question-and-answer website, Quora, and then used active learning to build a classifier that labeled 28,320 answers as stories. To predict the number of upvotes without the use of social network features, we create neural networks that model textual regions and the interdependence among regions, which serve as strong benchmarks for future research. To our best knowledge, this is the first large-scale study for automatic evaluation of narrative quality.Comment: 7 pages, 2 figures. Accepted at the 2017 IJCAI conferenc

    WordSup: Exploiting Word Annotations for Character based Text Detection

    Full text link
    Imagery texts are usually organized as a hierarchy of several visual elements, i.e. characters, words, text lines and text blocks. Among these elements, character is the most basic one for various languages such as Western, Chinese, Japanese, mathematical expression and etc. It is natural and convenient to construct a common text detection engine based on character detectors. However, training character detectors requires a vast of location annotated characters, which are expensive to obtain. Actually, the existing real text datasets are mostly annotated in word or line level. To remedy this dilemma, we propose a weakly supervised framework that can utilize word annotations, either in tight quadrangles or the more loose bounding boxes, for character detector training. When applied in scene text detection, we are thus able to train a robust character detector by exploiting word annotations in the rich large-scale real scene text datasets, e.g. ICDAR15 and COCO-text. The character detector acts as a key role in the pipeline of our text detection engine. It achieves the state-of-the-art performance on several challenging scene text detection benchmarks. We also demonstrate the flexibility of our pipeline by various scenarios, including deformed text detection and math expression recognition.Comment: 2017 International Conference on Computer Visio
    • …
    corecore