2,191 research outputs found

    Neural Multi-Task Learning for Citation Function and Provenance

    Full text link
    Citation function and provenance are two cornerstone tasks in citation analysis. Given a citation, the former task determines its rhetorical role, while the latter locates the text in the cited paper that contains the relevant cited information. We hypothesize that these two tasks are synergistically related, and build a model that validates this claim. For both tasks, we show that a single-layer convolutional neural network (CNN) outperforms existing state-of-the-art baselines. More importantly, we show that the two tasks are indeed synergistic: by jointly training both of the tasks in a multi-task learning setup, we demonstrate additional performance gains. Altogether, our models improve the current state-of-the-arts up to 2\%, with statistical significance for both citation function and provenance prediction tasks

    PRNU-based image classification of origin social network with CNN

    Get PDF
    A huge amount of images are continuously shared on social networks (SNs) daily and, in most of cases, it is very difficult to reliably establish the SN of provenance of an image when it is recovered from a hard disk, a SD card or a smartphone memory. During an investigation, it could be crucial to be able to distinguish images coming directly from a photo-camera with respect to those downloaded from a social network and possibly, in this last circumstance, determining which is the SN among a defined group. It is well known that each SN leaves peculiar traces on each content during the upload-download process; such traces can be exploited to make image classification. In this work, the idea is to use the PRNU, embedded in every acquired images, as the “carrier” of the particular SN traces which diversely modulate the PRNU. We demonstrate, in this paper, that SN-modulated noise residual can be adopted as a feature to detect the social network of origin by means of a trained convolutional neural network (CNN)

    Closing the loop: assisting archival appraisal and information retrieval in one sweep

    Get PDF
    In this article, we examine the similarities between the concept of appraisal, a process that takes place within the archives, and the concept of relevance judgement, a process fundamental to the evaluation of information retrieval systems. More specifically, we revisit selection criteria proposed as result of archival research, and work within the digital curation communities, and, compare them to relevance criteria as discussed within information retrieval's literature based discovery. We illustrate how closely these criteria relate to each other and discuss how understanding the relationships between the these disciplines could form a basis for proposing automated selection for archival processes and initiating multi-objective learning with respect to information retrieval

    Forecasting the Spreading of Technologies in Research Communities

    Get PDF
    Technologies such as algorithms, applications and formats are an important part of the knowledge produced and reused in the research process. Typically, a technology is expected to originate in the context of a research area and then spread and contribute to several other fields. For example, Semantic Web technologies have been successfully adopted by a variety of fields, e.g., Information Retrieval, Human Computer Interaction, Biology, and many others. Unfortunately, the spreading of technologies across research areas may be a slow and inefficient process, since it is easy for researchers to be unaware of potentially relevant solutions produced by other research communities. In this paper, we hypothesise that it is possible to learn typical technology propagation patterns from historical data and to exploit this knowledge i) to anticipate where a technology may be adopted next and ii) to alert relevant stakeholders about emerging and relevant technologies in other fields. To do so, we propose the Technology-Topic Framework, a novel approach which uses a semantically enhanced technology-topic model to forecast the propagation of technologies to research areas. A formal evaluation of the approach on a set of technologies in the Semantic Web and Artificial Intelligence areas has produced excellent results, confirming the validity of our solution

    Preparing Laboratory and Real-World EEG Data for Large-Scale Analysis: A Containerized Approach.

    Get PDF
    Large-scale analysis of EEG and other physiological measures promises new insights into brain processes and more accurate and robust brain-computer interface models. However, the absence of standardized vocabularies for annotating events in a machine understandable manner, the welter of collection-specific data organizations, the difficulty in moving data across processing platforms, and the unavailability of agreed-upon standards for preprocessing have prevented large-scale analyses of EEG. Here we describe a "containerized" approach and freely available tools we have developed to facilitate the process of annotating, packaging, and preprocessing EEG data collections to enable data sharing, archiving, large-scale machine learning/data mining and (meta-)analysis. The EEG Study Schema (ESS) comprises three data "Levels," each with its own XML-document schema and file/folder convention, plus a standardized (PREP) pipeline to move raw (Data Level 1) data to a basic preprocessed state (Data Level 2) suitable for application of a large class of EEG analysis methods. Researchers can ship a study as a single unit and operate on its data using a standardized interface. ESS does not require a central database and provides all the metadata data necessary to execute a wide variety of EEG processing pipelines. The primary focus of ESS is automated in-depth analysis and meta-analysis EEG studies. However, ESS can also encapsulate meta-information for the other modalities such as eye tracking, that are increasingly used in both laboratory and real-world neuroimaging. ESS schema and tools are freely available at www.eegstudy.org and a central catalog of over 850 GB of existing data in ESS format is available at studycatalog.org. These tools and resources are part of a larger effort to enable data sharing at sufficient scale for researchers to engage in truly large-scale EEG analysis and data mining (BigEEG.org)
    • …
    corecore