138,730 research outputs found

    NPRF: A Neural Pseudo Relevance Feedback Framework for Ad-hoc Information Retrieval

    Full text link
    Pseudo-relevance feedback (PRF) is commonly used to boost the performance of traditional information retrieval (IR) models by using top-ranked documents to identify and weight new query terms, thereby reducing the effect of query-document vocabulary mismatches. While neural retrieval models have recently demonstrated strong results for ad-hoc retrieval, combining them with PRF is not straightforward due to incompatibilities between existing PRF approaches and neural architectures. To bridge this gap, we propose an end-to-end neural PRF framework that can be used with existing neural IR models by embedding different neural models as building blocks. Extensive experiments on two standard test collections confirm the effectiveness of the proposed NPRF framework in improving the performance of two state-of-the-art neural IR models.Comment: Full paper in EMNLP 201

    Intelligent search for distributed information sources using heterogeneous neural networks

    Get PDF
    As the number and diversity of distributed information sources on the Internet exponentially increase, various search services are developed to help the users to locate relevant information. But they still exist some drawbacks such as the difficulty of mathematically modeling retrieval process, the lack of adaptivity and the indiscrimination of search. This paper shows how heteroge-neous neural networks can be used in the design of an intelligent distributed in-formation retrieval (DIR) system. In particular, three typical neural network models - Kohoren's SOFM Network, Hopfield Network, and Feed Forward Network with Back Propagation algorithm are introduced to overcome the above drawbacks in current research of DIR by using their unique properties. This preliminary investigation suggests that Neural Networks are useful tools for intelligent search for distributed information sources

    DE-PACRR: Exploring Layers Inside the PACRR Model

    Get PDF
    Recent neural IR models have demonstrated deep learning's utility in ad-hoc information retrieval. However, deep models have a reputation for being black boxes, and the roles of a neural IR model's components may not be obvious at first glance. In this work, we attempt to shed light on the inner workings of a recently proposed neural IR model, namely the PACRR model, by visualizing the output of intermediate layers and by investigating the relationship between intermediate weights and the ultimate relevance score produced. We highlight several insights, hoping that such insights will be generally applicable.Comment: Neu-IR 2017 SIGIR Workshop on Neural Information Retrieva

    Advancing continual lifelong learning in neural information retrieval: definition, dataset, framework, and empirical evaluation

    Full text link
    Continual learning refers to the capability of a machine learning model to learn and adapt to new information, without compromising its performance on previously learned tasks. Although several studies have investigated continual learning methods for information retrieval tasks, a well-defined task formulation is still lacking, and it is unclear how typical learning strategies perform in this context. To address this challenge, a systematic task formulation of continual neural information retrieval is presented, along with a multiple-topic dataset that simulates continuous information retrieval. A comprehensive continual neural information retrieval framework consisting of typical retrieval models and continual learning strategies is then proposed. Empirical evaluations illustrate that the proposed framework can successfully prevent catastrophic forgetting in neural information retrieval and enhance performance on previously learned tasks. The results indicate that embedding-based retrieval models experience a decline in their continual learning performance as the topic shift distance and dataset volume of new tasks increase. In contrast, pretraining-based models do not show any such correlation. Adopting suitable learning strategies can mitigate the effects of topic shift and data augmentation.Comment: Submitted to Information Science
    • …
    corecore