17,898 research outputs found

    Discriminative Segmental Cascades for Feature-Rich Phone Recognition

    Full text link
    Discriminative segmental models, such as segmental conditional random fields (SCRFs) and segmental structured support vector machines (SSVMs), have had success in speech recognition via both lattice rescoring and first-pass decoding. However, such models suffer from slow decoding, hampering the use of computationally expensive features, such as segment neural networks or other high-order features. A typical solution is to use approximate decoding, either by beam pruning in a single pass or by beam pruning to generate a lattice followed by a second pass. In this work, we study discriminative segmental models trained with a hinge loss (i.e., segmental structured SVMs). We show that beam search is not suitable for learning rescoring models in this approach, though it gives good approximate decoding performance when the model is already well-trained. Instead, we consider an approach inspired by structured prediction cascades, which use max-marginal pruning to generate lattices. We obtain a high-accuracy phonetic recognition system with several expensive feature types: a segment neural network, a second-order language model, and second-order phone boundary features

    Language Modeling with Deep Transformers

    Full text link
    We explore deep autoregressive Transformer models in language modeling for speech recognition. We focus on two aspects. First, we revisit Transformer model configurations specifically for language modeling. We show that well configured Transformer models outperform our baseline models based on the shallow stack of LSTM recurrent neural network layers. We carry out experiments on the open-source LibriSpeech 960hr task, for both 200K vocabulary word-level and 10K byte-pair encoding subword-level language modeling. We apply our word-level models to conventional hybrid speech recognition by lattice rescoring, and the subword-level models to attention based encoder-decoder models by shallow fusion. Second, we show that deep Transformer language models do not require positional encoding. The positional encoding is an essential augmentation for the self-attention mechanism which is invariant to sequence ordering. However, in autoregressive setup, as is the case for language modeling, the amount of information increases along the position dimension, which is a positional signal by its own. The analysis of attention weights shows that deep autoregressive self-attention models can automatically make use of such positional information. We find that removing the positional encoding even slightly improves the performance of these models.Comment: To appear in the proceedings of INTERSPEECH 201

    Learning Spoken Language Representations with Neural Lattice Language Modeling

    Full text link
    Pre-trained language models have achieved huge improvement on many NLP tasks. However, these methods are usually designed for written text, so they do not consider the properties of spoken language. Therefore, this paper aims at generalizing the idea of language model pre-training to lattices generated by recognition systems. We propose a framework that trains neural lattice language models to provide contextualized representations for spoken language understanding tasks. The proposed two-stage pre-training approach reduces the demands of speech data and has better efficiency. Experiments on intent detection and dialogue act recognition datasets demonstrate that our proposed method consistently outperforms strong baselines when evaluated on spoken inputs. The code is available at https://github.com/MiuLab/Lattice-ELMo.Comment: Published in ACL 2020 as a short pape
    • …
    corecore