1,892 research outputs found

    Remembering Forward: Neural Correlates of Memory and Prediction in Human Motor Adaptation

    Get PDF
    We used functional MR imaging (FMRI), a robotic manipulandum and systems identification techniques to examine neural correlates of predictive compensation for spring-like loads during goal-directed wrist movements in neurologically-intact humans. Although load changed unpredictably from one trial to the next, subjects nevertheless used sensorimotor memories from recent movements to predict and compensate upcoming loads. Prediction enabled subjects to adapt performance so that the task was accomplished with minimum effort. Population analyses of functional images revealed a distributed, bilateral network of cortical and subcortical activity supporting predictive load compensation during visual target capture. Cortical regions – including prefrontal, parietal and hippocampal cortices – exhibited trial-by-trial fluctuations in BOLD signal consistent with the storage and recall of sensorimotor memories or “states” important for spatial working memory. Bilateral activations in associative regions of the striatum demonstrated temporal correlation with the magnitude of kinematic performance error (a signal that could drive reward-optimizing reinforcement learning and the prospective scaling of previously learned motor programs). BOLD signal correlations with load prediction were observed in the cerebellar cortex and red nuclei (consistent with the idea that these structures generate adaptive fusimotor signals facilitating cancelation of expected proprioceptive feedback, as required for conditional feedback adjustments to ongoing motor commands and feedback error learning). Analysis of single subject images revealed that predictive activity was at least as likely to be observed in more than one of these neural systems as in just one. We conclude therefore that motor adaptation is mediated by predictive compensations supported by multiple, distributed, cortical and subcortical structures

    Viewing the personality traits through a cerebellar lens. A focus on the constructs of novelty seeking, harm avoidance, and alexithymia

    Get PDF
    The variance in the range of personality trait expression appears to be linked to structural variance in specific brain regions. In evidencing associations between personality factors and neurobiological measures, it seems evident that the cerebellum has not been up to now thought as having a key role in personality. This paper will review the most recent structural and functional neuroimaging literature that engages the cerebellum in personality traits, as novelty seeking and harm avoidance, and it will discuss the findings in the context of contemporary theories of affective and cognitive cerebellar function. By using region of interest (ROI)- and voxel-based approaches, we recently evidenced that the cerebellar volumes correlate positively with novelty seeking scores and negatively with harm avoidance scores. Subjects who search for new situations as a novelty seeker does (and a harm avoiding does not do) show a different engagement of their cerebellar circuitries in order to rapidly adapt to changing environments. The emerging model of cerebellar functionality may explain how the cerebellar abilities in planning, controlling, and putting into action the behavior are associated to normal or abnormal personality constructs. In this framework, it is worth reporting that increased cerebellar volumes are even associated with high scores in alexithymia, construct of personality characterized by impairment in cognitive, emotional, and affective processing. On such a basis, it seems necessary to go over the traditional cortico-centric view of personality constructs and to address the function of the cerebellar system in sustaining aspects of motivational network that characterizes the different temperamental trait

    Tempo and intensity of pre-task music modulate neural activity during reactive task performance

    Get PDF
    This is the author's accepted manuscript. The final published article is available from the link below. Copyright @ 2013 The Authors.Research has shown that not only do young athletes purposively use music to manage their emotional state (Bishop, Karageorghis, & Loizou, 2007), but also that brief periods of music listening may facilitate their subsequent reactive performance (Bishop, Karageorghis, & Kinrade, 2009). We report an fMRI study in which young athletes lay in an MRI scanner and listened to a popular music track immediately prior to performance of a three-choice reaction time task; intensity and tempo were modified such that six excerpts (2 intensities × 3 tempi) were created. Neural activity was measured throughout. Faster tempi and higher intensity collectively yielded activation in structures integral to visual perception (inferior temporal gyrus), allocation of attention (cuneus, inferior parietal lobule, supramarginal gyrus), and motor control (putamen), during reactive performance. The implications for music listening as a pre-competition strategy in sport are discussed

    Neural Bases of Cognitive Impairments in Post-Traumatic Stress Disorders : A Mini-Review of Functional Magnetic Resonance Imaging Findings

    Get PDF
    Introduction: Post-Traumatic Stress Disorder (PTSD) is often associated with impairments in emotional and cognitive domains. Contrarily to the emotional sphere, neural basis underpinnings to cognitive impairments are still not well known. Methods: We performed a bibliographic search on PUBMED of all the studies investigating the cognitive impairments in PTSD individuals. We considered only studies that applied cognitive tasks using a functional Magnetic Resonance Imaging technique. The inclusion criteria were met by nine studies. Results: Overall, PTSD individuals reported significant impairments in the dorsolateral prefrontal cortex, anterior cingulate cortex, inferior frontal gyrus, insula, inferior temporal cortex, supplement motor area, and Default Mode Network (DMN). Moreover, abnormal activity was reported in subcortical structures (e.g. hippocampus, amygdala, thalamus) and in the cerebellum. Limitations: Cognitive functioning was assessed using different cognitive tasks. Potential confounding factors such as age, sex, symptoms intensity, and comorbidities might have influenced the results. Conclusion: So far, the evidence reported that PTSD is characterized by cognitive impairments in several domains, such as attention, memory and autonomic arousal, which may be due to selective dysfunctions in brain regions that are part of cortical networks, the limbic system and DMN. However, further studies are needed in order to better assess the role of cognitive impairments in PTSD and to develop more targeted therapeutic approaches

    Left and right amygdala : mediofrontal cortical functional connectivity is differentially modulated by harm avoidance

    Get PDF
    Background: The left and right amygdalae are key regions distinctly involved in emotion-regulation processes. Individual differences, such as personality features, may affect the implicated neurocircuits. The lateralized amygdala affective processing linked with the temperament dimension Harm Avoidance (HA) remains poorly understood. Resting state functional connectivity imaging (rsFC) may provide more insight into these neuronal processes. Methods: In 56 drug-naive healthy female subjects, we have examined the relationship between the personality dimension HA on lateralized amygdala rsFC. Results: Across all subjects, left and right amygdalae were connected with distinct regions mainly within the ipsilateral hemisphere. Females scoring higher on HA displayed stronger left amygdala rsFC with ventromedial prefrontal cortical (vmPFC) regions involved in affective disturbances. In high HA scorers, we also observed stronger right amygdala rsFC with the dorsomedial prefrontal cortex (dmPFC), which is implicated in negative affect regulation. Conclusions: In healthy females, left and right amygdalae seem implicated in distinct mPFC brain networks related to HA and may represent a vulnerability marker for sensitivity to stress and anxiety (disorders)

    Neuroimaging in anxiety disorders

    Get PDF
    Neuroimaging studies have gained increasing importance in validating neurobiological network hypotheses for anxiety disorders. Functional imaging procedures and radioligand binding studies in healthy subjects and in patients with anxiety disorders provide growing evidence of the existence of a complex anxiety network, including limbic, brainstem, temporal, and prefrontal cortical regions. Obviously, “normal anxiety” does not equal “pathological anxiety” although many phenomena are evident in healthy subjects, however to a lower extent. Differential effects of distinct brain regions and lateralization phenomena in different anxiety disorders are mentioned. An overview of neuroimaging investigations in anxiety disorders is given after a brief summary of results from healthy volunteers. Concluding implications for future research are made by the authors

    The neurocognition of developmental disorders of language

    Get PDF
    Developmental disorders of language include developmental language disorder, motor-speech disorders such as articulation disorder and stuttering, and dyslexia. These disorders have been explained by various accounts, which generally focus on their behavioral rather than neural characteristics, their processing rather than learning impairments, and each disorder separately rather than together, despite their commonalities and comorbidities. Here we update and review a unifying neurocognitive account, the Procedural circuit Deficit Hypothesis (PDH). The PDH posits that abnormalities of brain structures underlying procedural memory (learning and memory that relies on the basal ganglia and associated circuitry) can explain numerous brain and behavioral characteristics, across learning and processing, in multiple disorders, including both commonalities and differences. We describe procedural memory, examine its role in multiple aspects of language, and then present the PDH and relevant evidence across language-related disorders. The PDH has substantial explanatory power, and both basic research and translational implications

    Multi-neuroimaging model of identifying neuroplasticity under motor cognitive learning condition: MRI based study.

    Get PDF
    Motor learning is a fundamental ability and one of the most robust models to study neural plasticity. The majority of human motor learning imaging studies focused on either short-term or long-term learning using one single imaging modality. These studies were thus not able to systematically investigate the dynamic process of motor learning from a multimodal perspective. The current project combined both short-term and long-term motor learning to comprehensively characterize neural plasticity at multiple phenotypic levels of the brain: functional activation, functional connectivity, grey matter volume, and glutamate concentration. To this end, this project involved a cross-sectional and a longitudinal study with multimodal brain imaging techniques (task fMRI, resting-state fMRI, gray matter structural fMRI, pharmacological fMRI, and MRS). Short-term motor learning was significantly correlated with brain network features related to network efficiency. It was also associated with a highly reliable cerebellum-centered network which was significantly modulated by the NMDA antagonist ketamine. Long-term motor learning was associated with increased activation in premotor / SMA and parietal regions and with increased gray matter volume of the SMA and the hippocampus. In addition, long-term motor learning was accompanied by a decrease in the functional connectivity of a network centered on the sensorimotor cortex which was related to handknob glutamate concentration levels and which involved regions that were highlighted by our activation and structural analyses. Taken together, this thesis contributes important evidence to the neurofunctional and neurostructural underpinnings of motor learning and points to the critical roles of the cerebellum, the hippocampus and the relevance of glutamate for motor learning in humans
    corecore