94 research outputs found

    Fault tolerant longitudinal aircraft control using non-linear integral sliding mode

    Get PDF
    Copyright © 2014 Institution of Engineering and Technology (IET)This study proposes a novel non-linear fault tolerant scheme for longitudinal control of an aircraft system, comprising an integral sliding mode control allocation scheme and a backstepping structure. In fault free conditions, the closed loop system is governed by the backstepping controller and the integral sliding mode control allocation scheme only influences the performance if faults/failures occur in the primary control surfaces. In this situation, the allocation scheme redistributes the control signals to the secondary control surfaces and the scheme is able to tolerate total failures in the primary actuator. A backstepping scheme taken from the existing literature is designed for flight path angle tracking (based on the non-linear equations of motion) and this is used as the underlying baseline controller in nominal conditions. The efficacy of the scheme is demonstrated using a high-fidelity aircraft benchmark model. Excellent results are obtained in the presence of plant/model uncertainty in both fault free and faulty conditions

    Robust Adaptive Neural Control of Morphing Aircraft with Prescribed Performance

    Get PDF
    This study proposes a low-computational composite adaptive neural control scheme for the longitudinal dynamics of a swept-back wing aircraft subject to parameter uncertainties. To efficiently release the constraint often existing in conventional neural designs, whose closed-loop stability analysis always necessitates that neural networks (NNs) be confined in the active regions, a smooth switching function is presented to conquer this issue. By integrating minimal learning parameter (MLP) technique, prescribed performance control, and a kind of smooth switching strategy into back-stepping design, a new composite switching adaptive neural prescribed performance control scheme is proposed and a new type of adaptive laws is constructed for the altitude subsystem. Compared with previous neural control scheme for flight vehicle, the remarkable feature is that the proposed controller not only achieves the prescribed performance including transient and steady property but also addresses the constraint on NN. Two comparative simulations are presented to verify the effectiveness of the proposed controller

    2004 Research Engineering Annual Report

    Get PDF
    Selected research and technology activities at Dryden Flight Research Center are summarized. These activities exemplify the Center's varied and productive research efforts
    • …
    corecore