3,355 research outputs found

    Aspect-Controlled Neural Argument Generation

    Full text link
    We rely on arguments in our daily lives to deliver our opinions and base them on evidence, making them more convincing in turn. However, finding and formulating arguments can be challenging. In this work, we train a language model for argument generation that can be controlled on a fine-grained level to generate sentence-level arguments for a given topic, stance, and aspect. We define argument aspect detection as a necessary method to allow this fine-granular control and crowdsource a dataset with 5,032 arguments annotated with aspects. Our evaluation shows that our generation model is able to generate high-quality, aspect-specific arguments. Moreover, these arguments can be used to improve the performance of stance detection models via data augmentation and to generate counter-arguments. We publish all datasets and code to fine-tune the language model

    Towards Knowledge-Grounded Counter Narrative Generation for Hate Speech

    Full text link
    Tackling online hatred using informed textual responses - called counter narratives - has been brought under the spotlight recently. Accordingly, a research line has emerged to automatically generate counter narratives in order to facilitate the direct intervention in the hate discussion and to prevent hate content from further spreading. Still, current neural approaches tend to produce generic/repetitive responses and lack grounded and up-to-date evidence such as facts, statistics, or examples. Moreover, these models can create plausible but not necessarily true arguments. In this paper we present the first complete knowledge-bound counter narrative generation pipeline, grounded in an external knowledge repository that can provide more informative content to fight online hatred. Together with our approach, we present a series of experiments that show its feasibility to produce suitable and informative counter narratives in in-domain and cross-domain settings.Comment: To appear in "Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics (ACL): Findings

    Building Machines That Learn and Think Like People

    Get PDF
    Recent progress in artificial intelligence (AI) has renewed interest in building systems that learn and think like people. Many advances have come from using deep neural networks trained end-to-end in tasks such as object recognition, video games, and board games, achieving performance that equals or even beats humans in some respects. Despite their biological inspiration and performance achievements, these systems differ from human intelligence in crucial ways. We review progress in cognitive science suggesting that truly human-like learning and thinking machines will have to reach beyond current engineering trends in both what they learn, and how they learn it. Specifically, we argue that these machines should (a) build causal models of the world that support explanation and understanding, rather than merely solving pattern recognition problems; (b) ground learning in intuitive theories of physics and psychology, to support and enrich the knowledge that is learned; and (c) harness compositionality and learning-to-learn to rapidly acquire and generalize knowledge to new tasks and situations. We suggest concrete challenges and promising routes towards these goals that can combine the strengths of recent neural network advances with more structured cognitive models.Comment: In press at Behavioral and Brain Sciences. Open call for commentary proposals (until Nov. 22, 2016). https://www.cambridge.org/core/journals/behavioral-and-brain-sciences/information/calls-for-commentary/open-calls-for-commentar

    Revisiting the Role of Similarity and Dissimilarity in Best Counter Argument Retrieval

    Full text link
    This paper studies the task of best counter-argument retrieval given an input argument. Following the definition that the best counter-argument addresses the same aspects as the input argument while having the opposite stance, we aim to develop an efficient and effective model for scoring counter-arguments based on similarity and dissimilarity metrics. We first conduct an experimental study on the effectiveness of available scoring methods, including traditional Learning-To-Rank (LTR) and recent neural scoring models. We then propose Bipolar-encoder, a novel BERT-based model to learn an optimal representation for simultaneous similarity and dissimilarity. Experimental results show that our proposed method can achieve the accuracy@1 of 49.04\%, which significantly outperforms other baselines by a large margin. When combined with an appropriate caching technique, Bipolar-encoder is comparably efficient at prediction time

    Sentence-Level Content Planning and Style Specification for Neural Text Generation

    Full text link
    Building effective text generation systems requires three critical components: content selection, text planning, and surface realization, and traditionally they are tackled as separate problems. Recent all-in-one style neural generation models have made impressive progress, yet they often produce outputs that are incoherent and unfaithful to the input. To address these issues, we present an end-to-end trained two-step generation model, where a sentence-level content planner first decides on the keyphrases to cover as well as a desired language style, followed by a surface realization decoder that generates relevant and coherent text. For experiments, we consider three tasks from domains with diverse topics and varying language styles: persuasive argument construction from Reddit, paragraph generation for normal and simple versions of Wikipedia, and abstract generation for scientific articles. Automatic evaluation shows that our system can significantly outperform competitive comparisons. Human judges further rate our system generated text as more fluent and correct, compared to the generations by its variants that do not consider language style.Comment: Accepted as a long paper to EMNLP 201
    corecore