137 research outputs found

    Achieving on-Mobile Real-Time Super-Resolution with Neural Architecture and Pruning Search

    Full text link
    Though recent years have witnessed remarkable progress in single image super-resolution (SISR) tasks with the prosperous development of deep neural networks (DNNs), the deep learning methods are confronted with the computation and memory consumption issues in practice, especially for resource-limited platforms such as mobile devices. To overcome the challenge and facilitate the real-time deployment of SISR tasks on mobile, we combine neural architecture search with pruning search and propose an automatic search framework that derives sparse super-resolution (SR) models with high image quality while satisfying the real-time inference requirement. To decrease the search cost, we leverage the weight sharing strategy by introducing a supernet and decouple the search problem into three stages, including supernet construction, compiler-aware architecture and pruning search, and compiler-aware pruning ratio search. With the proposed framework, we are the first to achieve real-time SR inference (with only tens of milliseconds per frame) for implementing 720p resolution with competitive image quality (in terms of PSNR and SSIM) on mobile platforms (Samsung Galaxy S20)

    NASRec: Weight Sharing Neural Architecture Search for Recommender Systems

    Full text link
    The rise of deep neural networks provides an important driver in optimizing recommender systems. However, the success of recommender systems lies in delicate architecture fabrication, and thus calls for Neural Architecture Search (NAS) to further improve its modeling. We propose NASRec, a paradigm that trains a single supernet and efficiently produces abundant models/sub-architectures by weight sharing. To overcome the data multi-modality and architecture heterogeneity challenges in recommendation domain, NASRec establishes a large supernet (i.e., search space) to search the full architectures, with the supernet incorporating versatile operator choices and dense connectivity minimizing human prior for flexibility. The scale and heterogeneity in NASRec impose challenges in search, such as training inefficiency, operator-imbalance, and degraded rank correlation. We tackle these challenges by proposing single-operator any-connection sampling, operator-balancing interaction modules, and post-training fine-tuning. Our results on three Click-Through Rates (CTR) prediction benchmarks show that NASRec can outperform both manually designed models and existing NAS methods, achieving state-of-the-art performance

    Farthest Greedy Path Sampling for Two-shot Recommender Search

    Full text link
    Weight-sharing Neural Architecture Search (WS-NAS) provides an efficient mechanism for developing end-to-end deep recommender models. However, in complex search spaces, distinguishing between superior and inferior architectures (or paths) is challenging. This challenge is compounded by the limited coverage of the supernet and the co-adaptation of subnet weights, which restricts the exploration and exploitation capabilities inherent to weight-sharing mechanisms. To address these challenges, we introduce Farthest Greedy Path Sampling (FGPS), a new path sampling strategy that balances path quality and diversity. FGPS enhances path diversity to facilitate more comprehensive supernet exploration, while emphasizing path quality to ensure the effective identification and utilization of promising architectures. By incorporating FGPS into a Two-shot NAS (TS-NAS) framework, we derive high-performance architectures. Evaluations on three Click-Through Rate (CTR) prediction benchmarks demonstrate that our approach consistently achieves superior results, outperforming both manually designed and most NAS-based models.Comment: 9 pages, 5 figure

    AutoMoE: Heterogeneous Mixture-of-Experts with Adaptive Computation for Efficient Neural Machine Translation

    Full text link
    Mixture-of-Expert (MoE) models have obtained state-of-the-art performance in Neural Machine Translation (NMT) tasks. Existing works in MoE mostly consider a homogeneous design where the same number of experts of the same size are placed uniformly throughout the network. Furthermore, existing MoE works do not consider computational constraints (e.g., FLOPs, latency) to guide their design. To this end, we develop AutoMoE -- a framework for designing heterogeneous MoE's under computational constraints. AutoMoE leverages Neural Architecture Search (NAS) to obtain efficient sparse MoE sub-transformers with 4x inference speedup (CPU) and FLOPs reduction over manually designed Transformers, with parity in BLEU score over dense Transformer and within 1 BLEU point of MoE SwitchTransformer, on aggregate over benchmark datasets for NMT. Heterogeneous search space with dense and sparsely activated Transformer modules (e.g., how many experts? where to place them? what should be their sizes?) allows for adaptive compute -- where different amounts of computations are used for different tokens in the input. Adaptivity comes naturally from routing decisions which send tokens to experts of different sizes. AutoMoE code, data, and trained models are available at https://aka.ms/AutoMoE.Comment: ACL 2023 Finding

    Rankitect: Ranking Architecture Search Battling World-class Engineers at Meta Scale

    Full text link
    Neural Architecture Search (NAS) has demonstrated its efficacy in computer vision and potential for ranking systems. However, prior work focused on academic problems, which are evaluated at small scale under well-controlled fixed baselines. In industry system, such as ranking system in Meta, it is unclear whether NAS algorithms from the literature can outperform production baselines because of: (1) scale - Meta ranking systems serve billions of users, (2) strong baselines - the baselines are production models optimized by hundreds to thousands of world-class engineers for years since the rise of deep learning, (3) dynamic baselines - engineers may have established new and stronger baselines during NAS search, and (4) efficiency - the search pipeline must yield results quickly in alignment with the productionization life cycle. In this paper, we present Rankitect, a NAS software framework for ranking systems at Meta. Rankitect seeks to build brand new architectures by composing low level building blocks from scratch. Rankitect implements and improves state-of-the-art (SOTA) NAS methods for comprehensive and fair comparison under the same search space, including sampling-based NAS, one-shot NAS, and Differentiable NAS (DNAS). We evaluate Rankitect by comparing to multiple production ranking models at Meta. We find that Rankitect can discover new models from scratch achieving competitive tradeoff between Normalized Entropy loss and FLOPs. When utilizing search space designed by engineers, Rankitect can generate better models than engineers, achieving positive offline evaluation and online A/B test at Meta scale.Comment: Wei Wen and Kuang-Hung Liu contribute equall

    Binarizing Sparse Convolutional Networks for Efficient Point Cloud Analysis

    Full text link
    In this paper, we propose binary sparse convolutional networks called BSC-Net for efficient point cloud analysis. We empirically observe that sparse convolution operation causes larger quantization errors than standard convolution. However, conventional network quantization methods directly binarize the weights and activations in sparse convolution, resulting in performance drop due to the significant quantization loss. On the contrary, we search the optimal subset of convolution operation that activates the sparse convolution at various locations for quantization error alleviation, and the performance gap between real-valued and binary sparse convolutional networks is closed without complexity overhead. Specifically, we first present the shifted sparse convolution that fuses the information in the receptive field for the active sites that match the pre-defined positions. Then we employ the differentiable search strategies to discover the optimal opsitions for active site matching in the shifted sparse convolution, and the quantization errors are significantly alleviated for efficient point cloud analysis. For fair evaluation of the proposed method, we empirically select the recently advances that are beneficial for sparse convolution network binarization to construct a strong baseline. The experimental results on Scan-Net and NYU Depth v2 show that our BSC-Net achieves significant improvement upon our srtong baseline and outperforms the state-of-the-art network binarization methods by a remarkable margin without additional computation overhead for binarizing sparse convolutional networks.Comment: Accepted to CVPR202
    corecore